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Abstract
Combining the actor-model with shared memory for per-
formance is efficient but can introduce data-races. Existing
approaches to static data-race freedom are based on unique-
ness and immutability, but lack flexibility and high perform-
ance implementations. Our approach, based on deny prop-
erties, allows reading, writing and traversing unique refer-
ences, introduces a new form of write uniqueness, and guar-
antees atomic behaviours.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Concurrent, distrib-
uted, and parallel languages

Keywords actors; message passing; concurrency; type sys-
tems; capabilities

1. Introduction
A current trend in programming languages is to combine
the actor-model [3] of concurrency with shared memory
to eliminate the requirement to copy all messages between
actors, as is done in languages such as Erlang [4]. This is
done to improve performance, but it results in the possibility
of data races.

Historically, programming languages have mostly relied
on dynamic approaches to prevent data races, using expli-
cit mechanisms, such as mutexes or semaphores, or implicit
mechanisms, such as lock inference or lock-free algorithms.
Ensuring data-race freedom statically [18] improves per-
formance by doing at compile-time what must otherwise be
done at run-time, and eliminates errors that can result from
incorrectly implementing locking or lock-free algorithms.

We provide a type system that ensures data race freedom
statically for an actor-model language while also providing a

way to type actors themselves, in the mould of active objects
[13], and without placing any restrictions on the structure
of messages. In addition, the type system is amenable to
efficient implementation, and we have implemented it for the
Pony programming language.

Existing approaches to static data race freedom use ref-
erence capabilities to describe what a reference is allowed
to do. In previous work, reference capabilities have been
expressed as permissions [10], fractional permissions [9],
uniqueness [12], immutability [28], and isolation [19] (a re-
finement of separate uniqueness [22], which is a refinement
of external uniqueness [12]).

We have taken a different approach and use reference
capabilities to describe what other aliases are denied [17]
by the existence of a reference. We use a matrix of deny
properties, with notions such as isolation, mutability, and
immutability all being derived from these properties. What
aliases to the object are allowed to do is explicit rather than
implied, whereas what the reference is allowed is derived.
This change in approach gives a derivation for properties
previously considered intrinsic, and models a reduction in
reference capabilities as a weaker guarantee.

We clarify our use of the term reference capability. Cap-
abilities were introduced to support protection across pro-
cesses [23], and have been adopted into several branches
of computing since. The term object capabilities has been
coined by Mark Miller [25, 26], to describe the set of op-
erations an object is allowed to apply on some other object.
Mark Miller proposes that in order to restrict this set, one
should create a new object which only offers these capabilit-
ies, and which delegates to the original object. In our work,
reference capabilities offer a partition of the operations into
those which may read, or write the object, or pass the object
on to a different actor. Moreover, our reference capabilities
are transitive, e.g. a write capability to an object o grants
write access to all its fields, but also to all the objects write-
able from o. Pony is both an object capability and reference
capability secure language.

Other approaches have combined actors with data-race
freedom, such as minimal ownership for active objects [13],
capabilities for uniqueness and borrowing in Scala [22], and
Kilim [29]. However, various useful patterns have not been



supported, e.g. traversing and modifying an isolated data
structure, or updating an object and then sending it in a mes-
sage while keeping read access to it. By taking a more fun-
damental view of reference capabilities, we were able to de-
velop a more flexible type system that supports such pat-
terns. Moreover, we have developed a fast implementation,
with performance comparable or superior to the fastest, un-
safe systems.

The matrix of deny properties exposes two novel refer-
ence capability types, tag and trn (transition). A tag refer-
ence capability allows identity comparison and asynchron-
ous method call, but does not allow reading from or writ-
ing to the reference. We type actors as tag, which allows
them to be integrated into the object type system and passed
in messages. A trn reference capability is a new form of
uniqueness, write uniqueness, that describes objects that can
only be written to through a single reference, but can be read
from through many aliases.

We also extend viewpoint adaptation [16, 19] to apply
to every reference capability and introduce the concept of
safe to write, which, taken together, allow reading from and
writing to both unique objects and unique fields. We treat
the types of temporary identifiers differently from those of
permanent paths, which allows us to traverse unique struc-
tures, something that is not possible using other approaches
[13, 19, 22].

In our system, an alias may have a different reference
capability from the initial reference. This addresses a key
issue in reference capability systems, namely that sub-typing
is not reflexive: an isolated type cannot be assigned to a field
or local variable unless the source reference is eliminated
with a technique such as destructive read or alias burying
[8]. As a part of this, we introduce unaliased types, which
provide static alias tracking without alias analysis.

Our reference capabilities also provide a static region sys-
tem [21], requiring no additional annotation. The trn ref-
erence capability provides a new form of write region, in
which a region boundary applies to write operations but not
read operations. In addition, actor behaviours are guaranteed
to be atomic, in the sense that an actor is guaranteed not to
witness changes in state made by other actors during the ex-
ecution of a behaviour, nor can a behaviour be interrupted
to execute a different behaviour on the same actor, nor can
a message be received by an actor while executing a beha-
viour.

Contributions In this work, we present:

• Deny properties as a fundamental basis for uniqueness
and immutability.

• Combination with the actor paradigm.
• A new form of write uniqueness, trn.
• A reference capability, tag, that can be used to type

actors.

• Viewpoint adaptation and safe-to-write semantics for
reading and writing unique types.

• An alias operation in the type system to express non-
reflexive sub-typing.

• Unaliased types for static alias tracking.
• Static regions, including a new form of write region.

Moreover, a native code compiler using LLVM, a runtime,
and a standard library exist for the Pony programming lan-
guage that uses this type system. We have used this impe-
mentation to demonstrate efficiency through a comparison
to existing actor-model languages and libraries, as well as to
MPI [20].

Outline We present our ideas in terms of a minimal actor-
model, object-oriented language. We present reference cap-
abilities as deny properties in sec. 2, a syntax in sec. 3, a
formal type system in sec. 4, an operational semantics in sec.
5, related work in sec. 6, an implementation and benchmarks
in sec. 7, and conclusions and further work in sec. 8.

2. Reference Capabilities as Deny Properties
Rather than indicate which operations are allowed on a ref-
erence1, our reference capabilities indicate what operations
are denied on other references to the same object (aliases).
We distinguish what is denied to the actor that holds a ref-
erence (local aliases) from what is denied to all other actors
(global aliases). Each reference capability stands for a pair
of local and global deny properties. These are shown in table
1. For example, ref denies global aliases that can read from
or write to the object, but it allows local aliases to both read
from and write to it.

No reference capability can deny local aliases that it al-
lows globally. Therefore, some cells in the matrix are empty.
For example, there is no reference capability that denies
local read and write aliases, but denies only write aliases
globally.

These deny properties are used to derive the operations
permitted on a reference. A reference that denies global
read and write aliases is safe to both read and write, i.e. is
mutable, since it guarantees that no other actor can read from
or write to the object. A reference that denies only global
write aliases is only safe to read, i.e. immutable, since it
guarantees no other actor will write to the object, but does
not guarantee no other actor will read from it. A reference
that allows all global aliases is not safe to either read or
write, i.e. it is opaque.

In addition, when the local deny properties and the global
deny properties of a reference are the same, the reference can
be safely sent as an argument to an asynchronous method
call to another actor, i.e. it is sendable. In other words, when
the local alias deny properties are the same as the global

1 We use the term reference to mean the path currently being considered,
and alias to mean any other path to the same object.



Deny global read/write aliases Deny global write aliases Allow all global aliases

Deny local read/write aliases Isolated (iso)

Deny local write aliases Transition (trn) Value (val)

Allow all local aliases Reference (ref) Box (box) Tag (tag)

(Mutable) (Immutable) (Opaque)

Table 1. Reference capability matrix. Those in italics are sendable.

alias deny properties, it does not matter which actor holds
the reference.

Short examples A ref reference to an object denies global
read/write aliases. As a result, it is safe to mutate the object,
since no other actor can read from it. This is effectively a
traditional object-oriented reference type.

If an actor has a box reference to an object, no alias can
be used by other actors to write to that object. This means
that other actors may be able to read the object, and aliases
in the same actor may be able to write to it (although not
both: if the actor can write to the object, other actors cannot
read from it). Using box for immutability allows a program
to enforce read-only behaviour, similar to const in C/C++.
For example:
class List

fun box size1(): Int => ...
fun val size2(): Int => ...

Note that the receiver reference capability is specified
after the keyword fun. In size1, by indicating that the
receiver has box reference capability, we can be certain that
this will not be mutated when calculating its size (provided
it has no mutable alias to itself). In addition, immutability
is transitive, so no readable fields of this will be mutated
either. Since box denies global write aliases but does not
deny local write aliases, it is possible for this to be mutated
through some alias if that alias is held by the same actor. The
box reference functions as a black box: the underlying object
may be mutable through an alias or it may be immutable
through any alias.

In size2, by indicating that the receiver has val refer-
ence capability, we make a stronger guarantee: we deny both
local and global write aliases. As a result, it is not possible
for this (and all its readable fields) to be mutated, regard-
less of other aliases, nor will it be mutated at any time in the
future.

Since a val reference has the same local and global deny
properties, it is possible to send a val reference to another
actor. A val reference is effectively a value type, similar to
values in functional languages.
actor Dataflow

be calculate1(list: List val) => ...
be calculate2(list: List box) // Not allowed

We use the keyword actor to indicate a class that can
have behaviours (asynchronous methods), and we use the
keyword be to define behaviours. A behaviour is executed
asynchronously by the receiving actor, and a given actor

executes only one behaviour at a time, making behaviours
atomic. While executing a behaviour, the receiver sees itself
(i.e. this in the behaviour) as ref, and is able to freely read
from and write to its own fields. However, at the call-site, a
behaviour does not read from or write to the receiver, and so
a behaviour can be called on a tag receiver.

In calculate1, the list parameter is guaranteed to be
deeply immutable, because a val is guaranteed to have no
local or global write aliases. As a result, it is safe to share this
object amongst actors. Denying global write aliases means
no actor can write to the object, regardless of how many
actors have an alias to list, making concurrent reads safe
without copying, locks, or any other runtime safety mechan-
ism. In calculate2, a parameter of type List box is rejec-
ted by the type system, as a box does not deny local write
aliases, making it unsafe to send a box to another actor as
the sending actor could retain a mutable alias.

A tag reference has no deny properties, but it can be
used for asynchronous method calls, i.e. calling behaviours.
A reference capability with no permissions has appeared
in previous work [27], but without allowing asynchronous
method calls.
actor Dataflow
be step(list: List val, flow: Dataflow tag) => ...

Here, we can call behaviours on flow, but we cannot read
or write the fields of flow. However, when flow executes
those behaviours asynchronously, it will see itself as a ref,
allowing it to mutate its own state. As such, tag allows us
to type actors themselves, thus integrating them into our
type system and allowing threads (in the form of actors)
to be treated as first-class values. In contrast to existing
systems [19], we formalise both dynamic thread creation
(actor constructors) and communicating actor graphs of any
shape (including cycles).

In order to pass mutable data between actors, we use iso
references. All mutable reference capabilities deny global
read/write aliases, allowing them to be written to because
no other actor can read from the object. An iso reference
also denies local read/write aliases, which means if the iso

reference is sent to another actor, we are guaranteed that the
sending actor no longer holds either read or write aliases to
the object sent.
actor Dataflow
be step(list: List iso, flow: Dataflow tag) => ...

Here, by passing an iso reference, a Dataflow actor
can mutate the list before sending it to the flow actor.



In order to do this, we must be certain the sending actor
does not retain a read or write alias. To this end we use
an aliasing type system wherein a newly created alias to
an object cannot violate the deny properties of the reference
being aliased. For example, a newly created alias of an iso

reference must be neither readable nor writeable (i.e. a tag).
To move deny properties, we consume a reference or use a
destructive read, both with the expected semantics.
actor Dataflow

be step(list: List iso, flow: Dataflow tag) =>
flow.step(list, this) // Not allowed
flow.step(consume list, this)

Our type system introduces the concept of unaliased
types, annotated with ◦, in order to type values for which
an alias has been removed. Here, the consume produces
a List iso◦ which is aliased as a List iso when the
behaviour is called. The non-destructive read produces a
List iso which is aliased as a List tag, which is rejected
by the type system.

We distinguish between aliases which outlive the execu-
tion of an expression, and temporary identifiers which do
not. The use of temporary identifiers, combined with view-
point adaptation, allows reading from and writing to isolated
objects and isolated fields. Earlier work on isolation and ex-
ternal uniqueness systems [12, 19, 22] does not provide this.
actor Dataflow

be step(list1: List iso, list2: List iso,
flow: Dataflow tag) =>

list1.next = consume list2
flow.step(consume list1)

Here, we mutate list1 by assigning list2 to its next
field, maintaining isolation for both list1 and list1.next.
Similarly, we could read from or write to fields of list1.next,
since path traversal is allowed. This also allows calling meth-
ods on isolated references and fields of any path depth.

Unsafe reads are prevented by viewpoint adaptation, and
unsafe writes are prevented by safe-to-write rules. For ex-
ample:
actor Dataflow

fun ref append(list1: List iso,
list2: List ref) =>

list1.next = list2 // Not allowed

Even if list1.next had the type List ref, this assign-
ment is rejected. As a result, isolated references form static
regions, wherein mutable references reachable by the iso

reference can only be reached via the iso reference and im-
mutable references reachable by the iso reference are either
globally immutable or can only be reached via the iso ref-
erence.

A trn reference makes a novel guarantee: write unique-
ness without read uniqueness. By denying global read/write
aliases, but only denying local write aliases, it allows an ob-
ject to be written to only via the trn reference, but read
from via other aliases held by the same actor. This allows
the object to be mutable while still allowing it to transition
to an immutable reference capability in the future, in order
to share it with another actor.

P ∈ Program ::= CT AT

CT ∈ ClassDef ::= class C F K M

AT ∈ ActorDef ::= actor A F K M B

S ∈ TypeID ::= A | C
T ∈ Type ::= Sκ

ET ∈ ExtType ::= T | S (iso | trn | ref)◦
F ∈ Field ::= var f : T
K ∈ Ctor ::= new k(x : T)⇒ e

M ∈ Func ::= funκ m(x : T) : ET⇒ e

B ∈ Behv ::= be b(x : T)⇒ e

n ∈ MethodID ::= k | m | b
κ ∈ Cap ::= iso | trn | ref | val | box | tag
e ∈ Expr ::= this | x | x = e | null | e; e

| e.f | e.f = e | recover e
| e.m(e) | e.b(e) | S.k(e)

E[·] ∈ ExprHole ::= x = E[·] | E[·]; e | (E[·]) | E[·].f
| e.f = E[·] | E[·].f = z | E[·].n(z)
| e.n(z, E[·], e) | recover E[·]

Figure 1. Syntax

C ∈ ClassID k ∈ CtorID
A ∈ ActorID m ∈ FuncID
f ∈ FieldID b ∈ BehvID

this, x ∈ SourceID n ∈ CtorID ∪ BehvID
t ∈ TempID y, z ∈ LocalID

Figure 2. Identifiers

class BookingManager
var accountant: Accountant
var all: Map[Date, Booking box]
var future: Map[Date, Booking trn]
fun ref close(date: Date) =>

accountant.account(future.remove(date))

actor Accountant
be account(booking: Booking val) => ...

Here2 we use a trn reference to model bookings that
remain mutable until they are closed and sent for account-
ing. All bookings are in the all map, but only mappings
that have not been closed out and are still mutable are
in the future map. When a booking is closed, it is re-
moved from the future map, returning a Booking trn◦,
which is aliased as a Booking trn, which is a subtype of
Booking val and can be shared with the Accountant actor.
Without a write unique type, namely trn, this would require
copying the Booking.

A trn reference also forms a static region, but with a
looser guarantee than an iso reference. Mutable references
reachable by the trn reference can only be reached via the
trn reference, but immutable references, whether global or
local, are not contained in the resulting write region.

3. Syntax
In fig. 1 we present the syntax, which is a subset of Pony.
We support actors in the mould of active objects, introduced
with the keyword actor. These can have both synchron-

2 In this example, we are using generic types and default reference capab-
ilities (ref for objects and tag for actors). While the full Pony language
supports these, we will not formalise them here.



ous methods (functions, introduced through the keyword
fun) and asynchronous methods (behaviours, introduced
through the keyword be) as well as named constructors (in-
troduced through the keyword new). Passive objects (intro-
duced through the keyword class) have only synchron-
ous methods (functions) and constructors. We use the term
method and identifier n to refer to constructors, functions,
and behaviours. The syntax of expressions is standard with
the exception of the recover keyword - more in sec. 4.

The novel element of the syntax is the inclusion of refer-
ence capability annotations κ on types and functions, where:
κ ∈ {iso, trn, ref, val, box, tag}
These reference capabilities are the foundation of our

type system.
Types consist of a class or actor identifier S followed by a

reference capability κ. In addition, extended types ET can be
unaliased, ◦. An unaliased type is created with constructors
and destructive reads - more in sec. 4.

The over-bar notation indicates a sequence of elements
such as F, with the convention that the nth element is re-
ferred to as Fn. Similarly, x : T indicates a pairwise sequence
of identifiers and types. To reduce notation, we assume a
fixed program P.

4. Type System
The type system has the format Γ ` e : ET and is defined in
fig. 3. The following aspects required special attention:

1. The treatment of operations which discard aliases.

2. The distinction between operations which introduce
stable aliases (i.e. paths that survive the execution of a
term) vs. those which create only temporary aliases.

3. Reference capabilities when accessing fields.

4. Reference capability recovery.

5. The treatment of actors.

Operations which discard aliases Assignment operations
discard aliases, as they return the previous value of the left-
hand side (ASNLOCAL and ASNFIELD) after overwriting it.
The fact that an alias has been discarded is important in the
cases where the reference capability is unique (iso or trn).
We indicate this through the unaliased annotation ◦, which
expresses that there is no stable path to the corresponding
object.

Because unaliasing is of importance only when the un-
derlying reference capability is iso, trn or ref, we have
defined the unaliasing operation U , which takes a type
and returns an extended type, cf. def. 1. This operator is
used whenever an alias is discarded (cf, T-ASNLOCAL, T-
ASNFLD).

Object constructors also introduce unaliased values, as in-
dicated in the rule T-CTOR. Also, null has no stable alias,
and thus is unaliased, cf. T-NULL. While the full Pony lan-

guage has no null, we use it here to simplify the modelling
of consume x, which is treated as (x = null).

Distinction between introducing stable or temporary ali-
ases Some operations introduce stable aliases (eg. assign-
ment), while others introduce only unstable ones (eg. field
read). We express the distinction in the type system through
the difference between the type judgments Γ ` e : ET and
the aliased type judgment Γ `A e : ET. For example, when
assigning an expression e to a variable x, the right-hand
side is typed in the judgment `A (cf. T-ASNLOCAL). The
aliasing judgement is also applied to the receiver and ar-
guments of method calls and asynchronous behaviours (T-
SYNC and T-ASYNC), the arguments to object and actor
constructors (T-CTOR and T-ATOR), and the right-hand side
of a field assignment (T-ASNFLD).

The aliased type judgment Γ `A e : ET is defined in
terms of the unaliased type judgment Γ ` e : ET′, where
ET has to be a super-type of the aliased version of ET′,
i.e. A(ET′) ≤ ET. The operation A(ET) gives the type
that an alias of ET would have. When aliasing an unaliased
type there is no previous alias to consider, and therefore
A(Sκ◦) = Sκ. For other types, the result must be the
minimal super-type of the underlying type which is locally
compatible with it, i.e.A(Sκ) = Sκ′ where κ′ ≤ A(κ′) and
A(κ′) does not locally deny κ′.

Definition 1. Aliasing and unaliasing.

• A(Sκ◦) = Sκ

• A(Sκ) =


S tag iff κ = iso

S box iff κ = trn

Sκ otherwise

• U(Sκ) =

{
Sκ◦ iff κ ∈ {iso, trn, ref}
Sκ otherwise

Thus, through a combination of aliasing and unaliasing,
we can obtain unique types when needed. For example, for x
and y of type C trn, the assignment x = y is illegal, because
the aliased type of y is C box and C box 6≤ C trn. However,
the assignment x = consume y is legal, because the type of
consume y is C trn◦, and the alias of C trn◦ is C trn.

Reference capabilities at field read When reading a field
f from an object ι we obtain a temporary. The reference
capability of this temporary must be a combination of κ,
the reference capability of the path leading to ι, and κ′, the
reference capability with which ι sees the field. We express
this through the operator ., defined in table 2. When reading
a field through an origin, the result must not violate the
deny properties of either the origin or the field. For example,
reading a ref field from an iso reference returns tag - thus
we do not violate the deny properties of the origin or the field
itself.

Storing a reference into a field of an object ι is legal if
the type of the reference is both a subtype of the type of



x ∈ Γ

Γ ` x :Γ(x)
T-LOCAL

Γ ` e : Sκ F(S, f) = S′ κ′

Γ ` e.f : S′ κ . κ′
T-FLD

S ∈ P

Γ ` null : S iso◦
T-NULL

Γ ` e : ET Γ ` e′ : ET′

Γ ` e; e′ : ET′
T-SEQ

Γ(x) = Sκ Γ `A e : Sκ

Γ ` x = e : U(Sκ)
T-ASNLOCAL

Γ ` e : Sκ Γ `A e′ : S′ κ′

F(S, f) = S′ κ′′ κ′ ≤ κ′′ ` κ / κ′∨ ` κ / κ′′

Γ ` e.f = e′ : U(S′ κ . κ′′)
T-ASNFLD

M(S, m) = (T, x : T, e, ET)
Γ `A e : T Γ `A ei : Ti

Γ ` e.m(e) : ET
T-SYNC

M(A, b) = (A ref, x : T, e, A tag)
Γ `A e : A tag Γ `A ei : Ti

Γ ` e.b(e) : A tag
T-ASYNC

M(C, k) = (C ref, x : T, e, C ref◦)
Γ `A ei : Ti

Γ ` C.k(e) : C ref◦
T-CTOR

M(A, k) = (A ref, x : T, e, A tag)
Γ `A ei : Ti

Γ ` A.k(e) : A tag
T-ATOR

Γ ` e : ET′ A(ET′) ≤ T

Γ `A e : T
T-ALIAS

Γ\{x | ¬Sendable(Γ(x))} ` e : ET

Γ ` recover e :R(ET)
T-REC

Γ ` e : Sκ◦
Γ ` e : Sκ

T-SUBSUME

Figure 3. Expression typing

κ . κ′ κ′

κ iso trn ref val box tag

iso iso tag tag val tag tag

trn iso trn box val box tag

ref iso trn ref val box tag

val val val val val val tag

box tag box box val box tag

tag ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 2. Viewpoint adaptation.

κ / κ′ κ′

κ iso trn ref val box tag

iso
√ √ √

trn
√ √ √ √

ref
√ √ √ √ √ √

val

box

tag

Table 3. Safe to write.

ET ≤ ET′′ ET′′ ≤ ET′

ET ≤ ET′ Sκ◦ ≤ Sκ

κ ≤ κ′

Sκ ≤ Sκ′

iso ≤ trn ≤ {ref, val} ≤ box ≤ tag

Sendable(T) iff T = Sκ ∧ κ ∈ {iso, val, tag}

Figure 4. Sub-types and sendable types.

the field and also safe to write into the origin. The relation
κ / κ′, as defined in table 3, expresses which reference
capabilities κ′ are safe to write into origin κ. When writing
to a field through an origin, no alias of the object being
written may exist that would violate the deny properties of
the origin. Therefore, all entries for val, box and tag are
empty. Moreover, only iso, val or tag references may be
stored into an iso origin; all other writes would violate the
region introduced by the iso origin.

Reference capability recovery The evaluation of an ex-
pression which has access only to sendable variables (i.e.
iso, val, and tag) will return a sendable type. This is an ex-
tension of previous work on recovery [19], which is related
to work on borrowing [22]. We introduce such expressions
through the recover keyword (T-REC). The return type of
recover e is the sendable version of the return type of e.
For example, if e has type ref, then recover e has type
iso, and if e has type ref◦, then recover e has type iso◦.

Definition 2. Reference capability recovery

R(Sκφ) =


S isoφ iff κ ∈ {iso, trn, ref}
S val iff κ ∈ {val, box}
S tag otherwise



χ ∈ Heap = Addr → (Actor ∨Object)

σ ∈ Stack = ActorAddr · Frame
ϕ ∈ Frame = MethodID × (LocalID → Value)

×ExprHole
LocalID = SourceID ∪ TempID

v ∈ Value = Addr ∪ {null}
ι ∈ Addr = ActorAddr ∪ObjectAddr
α ∈ ActorAddr
ω ∈ ObjectAddr

Actor = ActorID × (FieldID → Value)

×Message × Stack × Expr
Object = ClassID × (FieldID → Value)

µ ∈ Message = MethodID ×Value

Figure 5. Runtime entities

R(ET) is the sendable reference capability that retains the
same local read and/or write guarantee. In other words, a
writeable reference capability can become iso and a read-
able reference capability can become val. In Pony, explicit
recover expressions are used along with implicit recovery
detected by the compiler.

The treatment of actors Actors introduce the question of
who may read or update the actor’s fields, the possibility
of synchronous calls on actors, and the type required for
asynchronous calls.

Field read and write requires that the actor should see
itself as a ref. As a result, any other actor will see it as
tag. Therefore no other actor except the current one will be
allowed to observe an actor’s fields - a nice consequence of
the type system.

By a similar argument, because the actor sees itself as
ref, any other paths that point to it will do so as box, ref,
or tag, and this means that the actor may call synchronous
methods on itself, provided that the receiver reference capab-
ility of the method declaration is ref, box, or tag. Interest-
ingly, for asynchronous (behaviour) calls, the receiving actor
only needs to be seen as a tag (T-ASYNC), even though the
receiver reference capability in the behaviour is ref. This is
in contrast to method calls, where the receiver object/actor
has to be seen as a reference capability which is a subtype of
the receiver reference capability in the method declaration.
The looser requirement for actors is sound, because, as dis-
cussed above, no other actor may obtain access to the actor’s
state.

5. Operational Semantics
The operational semantics has the shape χ → χ′, where
χ, χ′ are heaps mapping object addresses ω to their class
identifier and their fields, and actor addresses α to their actor
identifier, their fields, their message queue, their stack, and
the next expression to execute. Runtime entities are defined
in fig. 5. We use some shorthand notation for clarity - more
in app. fig. 11.

We use x to indicate a source identifier, t to indicate a
temporary identifier, and y and z to indicate identifiers which
may be either.

A call stack consists of an actor address α followed by
a sequence of frames ϕ. A frame consists of the method
identifier, a mapping of its parameters to values, and an
expression hole. The latter is the continuation of the caller
and will be executed by the previous frame when the current
activation terminates.

The auxiliary judgement χ, σ, e  χ′, σ′, e′ expresses
local execution within a single actor. M and F return
method and field declarations. They are defined in the ap-
pendix.

Local execution is defined in fig. 6. EXPRHOLE allows
execution to propagate to the context. FLD, NULL, and SEQ
are as expected.

ASNLOCAL and ASNFLD combine assignment with a
destructive read, returning the previous value of the left-hand
side. The resulting value is unaliased: while there may be
other paths pointing to the value in the program, this one
no longer does. In effect, one alias to the value has been
discarded. The existence of unaliased values is used in the
type system, where T-ASNLOCAL and T-ASNFIELD both
return an unaliased type, as explained in sec. 4.

SYNC and RETURN describe synchronous method call
and return. In SYNC, method m is called on object or actor ι.
The method parameters x and the method body e are looked
up using the method m and the type S of ι from the heap.
A new frame is pushed on to the stack, consisting of m, the
address of the receiver, the values of the arguments, and the
continuation. In RETURN, the topmost frame is popped from
the stack and execution continues.

ASYNC and BEHAVE describe asynchronous method
calls and execution. In ASYNC, a message consisting of
the behaviour identifier b and the arguments is appended to
the receiver’s message queue. In BEHAVE, an actor with an
empty call stack and a non-empty message queue removes
the oldest message from the queue, and pushes a new frame
on the stack.

CTOR and ATOR describe the construction of new objects
and actors. In CTOR, a new address ω is allocated on the
heap and the fields are initialised to null3. A new frame is
pushed on the stack in the same way as for SYNC. In ATOR,
instead of pushing a new frame on the stack, the new actor’s
queue is initialised with a constructor message containing
the constructor identifier k and the arguments. The first local
execution rule for a new actor will be BEHAVE, which will
execute the body of the constructor k.

REC is a no-op in the operational semantics, but has an
impact in the type system, where T-REC affects the reference
capability of the result of the expression.

3 This is a simplification. In Pony, we support object initialisation, and have
no null values.



χ, σ · ϕ, e χ′, σ · ϕ′, e′

χ, σ · ϕ, E[e] χ′, σ · ϕ′, E[e′]
EXPRHOLE

t /∈ ϕ ι = ϕ(z) ϕ′ = ϕ[t 7→ χ(ι, f)]

χ, σ · ϕ, z.f χ, σ · ϕ′, t
FLD

t /∈ ϕ ϕ′ = ϕ[t 7→ null ]

χ, σ · ϕ, null χ, σ · ϕ′, t
NULL

χ, σ, z; e χ, σ, e
SEQ

t /∈ ϕ ϕ′ = ϕ[x 7→ ϕ(z), t 7→ ϕ(x)]

χ, σ · ϕ, x = z χ, σ · ϕ′, t
ASNLOCAL

t /∈ ϕ ι = ϕ(z) ϕ′ = ϕ[t 7→ χ(ι, f)]
χ′ = χ[ϕ(z), f 7→ ϕ(y)]

χ, σ · ϕ, z.f = y χ′, σ · ϕ′, t
ASNFLD

ι = ϕ(z) M(χ(ι) ↓1, m) = (_, x : _, e, _)
ϕ′ = (m, [this 7→ ι, x 7→ ϕ(y)], E[·])
χ, σ · ϕ, E[z.m(y)] χ, σ · ϕ · ϕ′, e

SYNC

t /∈ ϕ ι = ϕ′(z)
ϕ′ ↓3= E[·] ϕ′′ = ϕ[t 7→ ι]

χ, σ · ϕ · ϕ′, z χ, σ · ϕ′′, E[t]
RETURN

α = ϕ(z) χ(α) ↓3= µ

χ, σ · ϕ, z.b(y) χ[α 7→ µ · (b, ϕ(y)], σ · ϕ, z
ASYNC

A = χ(α) ↓1 (n, v) · µ = χ(α) ↓3
M(A, n) = (_, x : _, e, _)

ϕ = (n, [this 7→ α, x 7→ v], ·)
χ, α, ε χ[α 7→ µ], α · ϕ, e

BEHAVE

ω 6∈ dom(χ) f = Fs(C)
M(C, k) = (_, x : _, e, _)
χ′ = χ[ω 7→ (C, f 7→ null)]

ϕ′ = (k, [this 7→ ω, x 7→ ϕ(y)], E[·])
χ, σ · ϕ, E[C.k(y)] χ′, σ · ϕ · ϕ′, e

CTOR

α 6∈ dom(χ) f = Fs(A)
t /∈ ϕ ϕ′ = ϕ[t 7→ α]

χ′ = χ[α 7→ (A, f 7→ null , (k, ϕ(y), α, ε)]

χ, σ · ϕ, A.k(y) χ′, σ · ϕ′, t
ATOR

χ, σ, e χ′, σ′, e′

χ, σ, recover e χ′, σ′, recover e′
REC1

t /∈ ϕ ϕ′ = ϕ[t 7→ ϕ(z)]

χ, σ, recover z χ, σ, t
REC2

χ, σ, consume x χ, σ, x = null
CONSUME

χ, χ(α) ↓4, χ(α) ↓5 χ′, σ, e

χ→ χ′[α 7→ (σ, e)]
GLOBAL

Figure 6. Execution.

GLOBAL defines global execution and says that if an actor
can execute, then its stack and next expression to execute
will be updated.

6. Related Work
Linear types [31] provide the basis for uniqueness type sys-
tems. The insight that a type that is usable only once allows
for mutation in a pure functional language leads directly to
using linearity for concurrency-safe mutation [5]. A combin-
ation of unique pointers and ownership types [14] is used in
PRFJ [7] to accomplish this.

In [10], a set of capabilities and exclusive capabilities, in-
cluding identity, is used to build a uniqueness and immutab-
ility type system. Several important concepts are articulated
in this work, including the notion that exclusive capabilities
deny the existence of capabilities through other aliases, the
use of destructive reads to manage capabilities, and the ex-
istence of the null capability (similar but not identical to tag

in our system).
Fractional permissions [9] encode uniqueness and im-

mutability as well as providing implicit static alias tracking
without alias analysis.

Relaxing the notion of uniqueness to external uniqueness
[12] and separate uniqueness [22] allows for richer and
more complex data structures to be simply encoded while
maintaining all of the useful properties of linear types.

Using ownership types to express immutability at the
object and reference level in OIGJ [32], rather than at the
class level, allows immutable references to objects of any
type.

In Kilim [29], tree-structured messages are used to com-
bine work on uniqueness with zero-copy messages between
actors. While this is a significant restriction, the combination
of actor-model concurrency, uniqueness, immutability and
destructive read semantics is powerful. External uniqueness
has also been extended to cover actor-model concurrency
[13], providing a richer type system without tree-structure
requirements. In [30], access permissions are combined with
data flow analysis for implicit concurrency, which is in some
sense the inverse of actor-model concurrency.

In [19], reference capabilities combined with viewpoint
adaptation and recovery build a powerful data race free
type system with significant usability advantages for the
programmer. In addition, external uniqueness is relaxed even
further to isolation, where immutable portions of an isolated
object can be aliased externally.

In [6], a type and effect system for deterministic se-
mantics is provided. This is a powerful system, but does not
provide the unbounded non-deterministic semantics avail-
able in the actor-model.

In Rust [24], atomic reference counts, mutexes, allow
properties, and ownership types are combined to achieve
data race freedom. The use of both run-time and compile-



Our Work Gordon Æminium DPJ Kilim Haller Scala Erlang Rust

Zero-copy
√ √ √ √ √ √ √ √

Data-race free
√ √ √ √ √4 √5 √ √

Statically data-race free
√ √ √ √ √ √ 6

Non-tree messages
√ √ √ √ √ √

Read unique (iso)
√ √ √ √ √

Write unique (trn)
√

Mutability (ref)
√ √ √ √ √ √ √ √

Immutability (val)
√ √ √ √ 7 √ √

Cyclic immutability
√ √

Identity (tag)
√ 8

Destructive read
√ √ √ √ √

Recovery
√ √

Using uniques (iso . x)
√

Actors
√ √ √ √ √

Table 4. Feature comparison.

time methods, and the addition of an unsafe module that
can violate the type system, is an interesting compromise
approach.

Our work is built on a deny properties [17] model instead
of a permissions or fractional permissions model. We show
that the type annotations used in related work are all expres-
sions of these deny properties, and that additional annota-
tions exist (particularly trn and the use of tag for typing
actors). We extend viewpoint adaptation and add our concept
of safe-to-write, allowing direct manipulation of isolated
types without recovery. Our use of tag with the actor-model
gives us a copy-less, lock-less operational semantics.

In table 4, we summarise some features of our work
and compare with those in Gordon et al. [19], Æminium
[30], Deterministic Parallel Java [6], Kilim [29], Haller and
Odersky [22], Scala, Erlang, and Rust [24].

7. Implementation and Benchmarking
We have implemented a native code compiler using our
type system and a custom actor-model runtime, including
the scheduler, memory allocator, garbage collector, message
queues, etc. We have also implemented a standard library

4 Kilim messages are data-race free but the rest of Java is not.
5 The proposed system is data-race free but the rest of Scala is not.
6 Rust uses atomic reference counts and reader-writer locks to prevent data
races.
7 Scala has types that are immutable by design, but cannot annotate refer-
ences to mutable types as immutable.
8 A version of identity, none, appears in [27].

and several real world data analytics programs. Our exper-
ience so far leads us to believe our reference capabilities
system is expressive and easy to use, and the language is
suitable for any problem that displays non-deterministic con-
currency and mutable state. Specific examples include data
analytics, financial systems, and video games.

To minimise the required annotations, Pony uses default
reference capabilities (tag for actors, ref for objects, val
for both built-in and user-defined primitives), while allow-
ing the default reference capability for a type to be overrid-
den (e.g. to default String to val instead of ref). In ad-
dition, the compiler guides the programmer as to which an-
notations should be used, infers annotations locally, and per-
forms automatic recovery in some circumstances. As a res-
ult, when implementing the HPCC RandomAccess bench-
mark we require just 8 reference capability annotations and
3 uses of recover in 249 LOC. In approximately 10k LOC in
the standard library, 89.3% of types required no annotation.

Deny properties are also amenable to a highly efficient
implementation. We have benchmarked our language against
other actor-model languages with the CAF [11] benchmark
suite [2] and against MPI with the HPCC RandomAccess
benchmark [1]. Results are the average of 100 runs, nor-
malised against Erlang performance on a single core such
that performance improvement linear to core count would be
shown as an straight line sloping up. We chose to normalise
against Erlang because it is a mature system with consistent
performance across core counts, with little jitter.

In fig. 7, we show actor creation performance when cre-
ating an interconnected tree of actors that cannot be collec-



Figure 7. Actor creation

Figure 8. Mailbox performance

ted until the program completes (the worst case for Pony).
Here, we are garbage collecting actors themselves [15] as
well as objects, but still outperforms existing systems other
than CAF, which is neither garbage collected nor data-race
free. In fig. 8, we show performance of a highly contended
mailbox, where additional cores tend to degrade perform-
ance. In fig. 9, we show performance of a mixed case, where
a heavy message load is combined with brute force factor-
isation of large integers.

In fig. 10, we show a benchmark that is not tailored for
actors: we take the RandomAccess benchmark from high-
performance computing, which tests random access memory
subsystem performance, and demonstrate that our imple-
mentation is significantly faster than the highly optimised
MPI implementation9.

While all benchmarking is to some degree snake oil, we
have chosen these benchmarks because a) they were de-
signed by others, b) they are hopefully representative of
some common actor-model programming idioms, and c)
they have optimised implementations in existing languages

9 We show only power-of-two core counts because the MPI implementation
is optimised for this case.

Figure 9. Mixed case performance

Figure 10. HPCC RandomAccess

and frameworks provided by programmers expert with those
tools.

The full Pony language as implemented in the compiler
includes additional features, such as generic types, traits,
structural types, type expressions (unions, intersections and
tuples), a non-null type system, sound constructors, pattern
matching, exceptions, and garbage collection. The Pony
runtime will eventually support distributed computation,
without a reduction in single-node performance.

The compiler, a web-based development sandbox, and
a language tutorial are available at http://ponylang.
org.

8. Conclusions and Further Work
We have used deny properties to provide a more fundamental
basis for uniqueness and immutability. We have uncovered
a new form of uniqueness, write uniqueness, and have ex-
plored the use of an identity reference capability for asyn-
chronous method calls. Our extensions to viewpoint adapt-
ation, including safe-to-write semantics, aliasing for non-
reflexive sub-typing, and unaliased types, allow more opera-
tions on unique types.



In future work, we intend to extend the formalisation in
this paper to prove soundness, and to cover additional type
system features such as generics, algebraic data types, and a
non-null type system. We also intend to formalise our use of
the type system to improve both concurrent and distributed
garbage collection.
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• ϕ(x) = ϕ ↓2 (x) ↓1
• ϕ[x 7→ v] = (ϕ ↓1, ϕ ↓2 [x 7→ v], ϕ ↓3)

• χ(ι, f) = χ(ι) ↓2 (f)

• χ[ω, f 7→ v] = χ[ω 7→ (χ(ω) ↓1, χ(ω) ↓2 [f 7→ v]]

• χ[α, f 7→ v] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2 [f 7→ v], χ(α) ↓3, χ(α) ↓4
, χ(α) ↓5)]

• χ[α 7→ (σ, e)] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2, χ(α) ↓3, σ, e]
• χ[α 7→ µ] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2, µ, χ(α) ↓4, χ(α) ↓5]

Figure 11. Auxiliary definitions

Appendix
We use the naming conventions given in fig.2, and the short-
hands defined in fig. 11.

Lookup functions are defined in fig. 12. Function P re-
turns a type definition for a class identifier C or actor identi-
fier A. This contains the fields F, constructors K, functions M,
and behaviours B defined for that type. Since classes have no
asynchronous behaviour, the last entry in P(C) is empty, i.e.
ε. FunctionFs returns the identifiers of all fields defined in a
type S, and function F returns the type of field f in S. Func-
tion M returns method information for some method in S.
This is overloaded on both the method identifier and the type
identifier in order to handle class constructors, actor con-
structors, synchronous methods (functions) and asynchron-
ous methods (behaviours). The result is a tuple of: the re-
ceiver type, the names and types of the parameters, the body
of the method, and the return type. The reference capability
of the receiver and the return type can vary for synchron-
ous methods, but not for constructors or asynchronous meth-
ods. Constructors always operate on a ref receiver, since the
constructor must write to the new object’s fields, and return
a ref◦ result, since the new object is initially mutable but
also unaliased, as the constructor’s reference to the receiver
(this) is discarded when the constructor returns. This al-
lows a constructor that is passed only sendable references as
parameters to be embedded in a recover expression, which
allows constructing an object with any reference capability.
Asynchronous methods always operate on a ref receiver.
This is because the receiver of an asynchronous method is
always an actor; when the body is executed, a new stack
with the receiver as the root actor is created. Since each
actor executes the body of a single behaviour (or asynchron-
ous constructor) at any given time, every behaviour body can
read from and write to the receiver. Since an asynchronous
method cannot, by definition, perform any operations at the
call site before returning, the only possible return values are
the receiver or null. We have chosen to return the receiver
to allow chaining method calls.

P = CT AT

class C F K M ∈ CT

P(C) = F K M ε
C ∈ P

P = CT AT

actor A F K M B ∈ AT

P(A) = F K M B
A ∈ P

P(S) = F K M B

Fs(S) = {f | var f : T ∈ F}

P(S) = F K M B var f : T ∈ F

F(S, f) = T

P(C) = F K M (new k(x : T)⇒ e) ∈ K

M(C, k) = (C ref, x : T, e, C ref◦)

P(A) = F K M B (new k(x : T)⇒ e) ∈ K

M(A, k) = (A var, x : T, e, A tag)

P(S) = F K M B (funκ m(x : T) : ET⇒ e) ∈ M

M(S, m) = (Sκ, x : T, e, ET)

P(A) = F K M B (be b(x : T)⇒ e) ∈ B

M(A, b) = (A ref, x : T, e, A tag)

Figure 12. Lookup functions

∀S ∈ P. ` S�
` P�

WF-PROGRAM

P(S) = F K M B

∀var f : Sκ ∈ F. ` S � ∀K ∈ K.S ` K�
∀M ∈ M.S ` M � ∀B ∈ B.S ` B�

` S�
WF-TYPE

[this 7→ C var, x 7→ T] ` e : C var◦
C ` new k(x : T)⇒ e�

WF-CTOR

[this 7→ Sκr, x 7→ T] ` e : ET

S ` funκr m(x : T) : ET⇒ e�
WF-SYNC

Sendable(Ti)
[this 7→ A var, x 7→ T] ` e : A tag

A ` new k(x : T)⇒ e�
WF-ATOR

Sendable(Ti)
[this 7→ A var, x 7→ T] ` e : A tag

A ` be b(x : T)⇒ e�
WF-ASYNC

Figure 13. Well-formed programs

• z ∈ ϕ iff z ∈ dom(ϕ ↓2)

• α ∈ χ iff α ∈ dom(χ)

• ∆ ` α ∈ χ iff α ∈ dom(χ)

• ∆ ` ι ∈ χ iff ∃ι′ such that ∆ ` ι′ ∈ χ and ∆, χ, ι′ ` ι : _

• M(ϕ, χ) =M(χ(ϕ(this) ↓1, ϕ ↓1)

Figure 14. Auxiliary well-formedness definitions


