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Abstract

A formal model of a programming language gives confidence that the language fulfils

any guarantees it claims about safety or liveness, also helping to uncover bugs or incon-

sistencies within the language design or implementation. We focus on the programming

language Pony: a relatively new, actor-model, concurrent programming language with

an existing partial model showing that Pony’s type system guarantees freedom from

data-races but lacking a number of important features found in the language itself.

In this thesis we describe PonyG , a formal model for a significantly larger subset of

the Pony language. We begin by revisiting the existing formal model, simplifying and

enhancing the model considerably in several ways with a number of novel components.

Firstly, we introduce the explicit extracting viewpoint adaptation operator, which

allows us to distinguish between field read and write operations and allows us to type

such expressions in a less restrictive way than that enforced by the old model. Secondly,

we introduce the distinction between temporaries at the focus of the execution, which

we refer to as active temporaries, and other passive temporaries such as those being

passed as arguments to a method call. By combining these two new distinctions we

are able to considerably simplify the definition of well-formed runtime configurations

and more easily reason about the heap at arbitrary points during execution, allowing

us to prove that our well-formedness definitions are preserved through execution of the

program.

After simplifying the model, we move on to include a number of extensions found in

the Pony language, namely inheritance, unions, tuples and intersection types. We also

note and provide potential solutions for a number of bugs in the existing implementation

for the language exposed during development of the model, which could lead to data-

races occurring.
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1 Introduction

1.1 Motivation

A modern processor contains a large number of independent cores which when used

simultaneously provide a significant speed-up over simple single-threaded execution of

processes. It is therefore unsurprising that interest is quickly growing in multi-core com-

puting as well as in the languages and libraries aiming to solve the inherent difficulties

with programming for concurrent settings.

Pony is an actor-model, concurrent programming language developed with the aim

of being able to write high performance and data-race free programs that naturally take

advantage of the multiple cores present in modern computers without exposing the user

to complex and difficult to diagnose issues such as synchronisation correctness. Utilising

the actor model is a natural choice for concurrency: actors themselves are naturally

independent and can execute in isolation, only needing to communicate when passing

messages to one another. In order to support passing objects to other actors without the

need to copy them each time, which would be a substantial blow to performance, Pony

utilises a system of capabilities to ensure that data-races cannot occur due to shared

objects. Section 2.2.1 explains Pony’s capabilities in more detail, but in simple terms

capabilities allow an elegant way of ensuring important properties such as that no actor

will be able to read or modify the contents of an object while it could be modified by

another actor simultaneously.

Dealing with concurrency, especially given potential issues arising from misuse or

lack of synchronisation between concurrent operations like deadlock or data-races, it is

important that languages such as Pony are well understood formally in order to be able

to argue that these languages do in fact enforce correct parallel operation and that it

is not possible for the system to fail or become prone to data-races or deadlock under

some edge-case condition.

A formal model for a subset of the Pony language has been developed by Clebsch

et al. [4], which we refer to it as PonyS . This provides a good starting point, however

PonyS is incomplete with regard to modelling a large number of features of the language.

The goal of this project was to continue and enhance this formalisation, providing a

model for a larger portion of the Pony programming language, as well as exploring areas

where the language is needlessly restrictive.

1.2 Contributions

In this report we present PonyG , a new formal model for Pony that extends PonyS with

a number of novel features that considerably simplify the basic model of the language,

making it easier to further extend the language with additional language features not

currently modelled. We also derive a number of definitions, such as that for view-

point adaptation, in a structured and principled way (while the definitions found in

PonyS were primarily example-driven).

We begin by revisiting the basic definitions of the Pony language and extend the

system of capabilities to include ephemeral modifiers in section 3.3.1 which were previ-
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ously considered separately from the capabilities themselves. We show that we can now

redefine various operations including subtyping (section 3.10), allowing us to prove a

number of important lemmas that did not previously hold.

After revisiting the original definition of viewpoint adaptation (the capability ob-

tained on the read or write of a field) we realised that the definition presented in

PonyS (and in the Pony language itself) is unnecessarily restrictive. We introduce a

novel extension to the language in the form of extracting viewpoint adaptation (see

section 3.11), which allows us to relax this definition and allow greater freedom when

writing programs in the language.

In order to ensure our new definitions of viewpoint adaptation are correct, we de-

scribe a number of well-formedness requirements that valid definitions of viewpoint

adaptation must adhere to, which opens the door to the possibility of multiple valid def-

initions of viewpoint adaptation satisfying the provided requirements. We use the Prolog

programming language to exhaustively check our chosen definitions to ensure they are

well-formed, and show that we can entirely generate the definition for our new operator

for extracting viewpoint adaptation purely from these well-formedness requirements.

Another novel contribution is the introduction of a distinction between active and

passive temporaries in section 3.13. By observing the order of execution dictated by

the syntax we noticed that at most one active temporary (used in expressions like

reading or writing to a field) would ever exist per actor at any one time before being

consumed. This observation combined with the temporaries themselves allows us a

straightforward method of reasoning about a heap part-way through execution while

retaining typing of an expression and guaranteeing well-formedness properties without

additional complexity.

We utilise these new temporaries to give a heavily revised definition of well-formed

visibility (presented in section 3.15, ensures that a heap is valid with respect to enforcing

that no data-races can occur). By utilising these new temporaries combined with our

new operator for extracting viewpoint adaptation we are able to construct a definition

that is significantly simpler than the original definition presented by PonyS and one

that is easily extended to cover extensions to the model later on. To achieve this, we

introduce a further novel concept in the form of extended paths and generalised paths

which augments paths through the heap with a series of viewpoint adaptation operators

to allow us to express the fact that a path may give rise to a number of different

capabilities on the object being pointed to depending on the operations performed on

it as the path is progressed through (e.g. reading each field through the path in turn

gives one capability, but overwriting each field as we go may give rise to a completely

different and otherwise unrelated capability).

Using these new temporaries we then proceed to prove that our property of well-

formed visibility is preserved across execution of an expression in section 4.3, proving a

number of important lemmas in the process by once again using Prolog to exhaustively

check for counterexamples where feasible.

In order to show that our model is extensible with additional language features, we

then proceed by presenting a number of extensions to our basic PonyG model. These

include inheritance (both nominal and structural, see section 5), union types (section 6),

2



tuples (section 7) and intersection types (section 8) and argue that preservation of well-

formedness should be preserved.

Along the course of the report, we uncover a small number of bugs in the existing

implementation of the language (namely sections 2.6.4 and 7.6) where the type-system

fails to prevent a data-race from occurring. We discuss and present potential solutions

to these issues where relevant.
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2 Background

2.1 Actor-Based Programming

Traditionally, higher-level programming languages support some form of concurrency

construct, usually by allowing the programmer to create threads of execution. In Java,

for example, the class java.lang.Thread [15] is provided, the corresponding class

in C++ being std::thread [5]. This is generally a poor choice for general concur-

rent programming for a variety of reasons, the primary one being that threads created

locally within the same process share the address space of that process, so data-races

may occur unless correct synchronisation is used. This in turn raises the possibility of

further problems like deadlock and burdens the programmer with the complexities of

synchronisation primitives like semaphores and locks. Alternately the programmer may

choose to ignore these language concurrency constructs and instead use the operating

system to construct multiple concurrent processes. These independent processes have

the advantage of guaranteeing separation of address spaces by default and so naturally

avoid data-races, however processes are costly to create and communication with other

processes is expensive as it now requires the involvement of the operating system kernel.

Actor-based programming languages were first introduced by Hewitt et al. [9] as

an architecture for efficiently representing and running artificial intelligence languages.

It provides the illusion of distinct actors executing concurrently from one-another (al-

though a single actor will itself execute sequentially) and enforces that they may only

communicate and invoke methods of other actors through message passing in an asyn-

chronous manner. Many actor-model based programming languages such as Erlang [6]

implement a message passing system between processes which allows avoiding locks and

grants data-race freedom, but do not eliminate the significant performance cost incurred

by the copying of messages.

2.2 Pony

The Pony language provides static data-race freedom by ensuring at compile time that

no piece of data can be modified whilst also being read or modified by a different actor.

This has the advantage of ensuring that multiple actors can share an address space

without interfering and allow message passing to occur without needing to copy the

message or involve the operating system kernel.

Pony allows the definition of both functions and behaviours. Functions may be called

from within the same actor or from an actor on an object, while behaviours may only be

defined on an actor and are executed asynchronously by adding the call to the actor’s

message queue. As an example, consider the following small code segment:

1 actor A2

2 be helloBehaviour(env: Env) =>

3 env.out.print("Hello from A2 (be)")

4

5 fun helloFunction(env: Env) =>

6 env.out.print("Hello from A2 (fun)")

4



7

8 actor Main

9 be helloBehaviour(env: Env) =>

10 env.out.print("Hello from Main (be)")

11

12 fun helloFunction(env: Env) =>

13 env.out.print("Hello from Main (fun)")

14

15 new create(env: Env) =>

16 this.helloFunction(env) // "Hello from Main (fun)"

17 this.helloBehaviour(env) // "Hello from Main (be)"

18 A2.create().helloFunction(env) // fails to compile

19 A2.create().helloBehaviour(env) // "Hello from A2 (be)"

From the above code we can identify a number of details of the Pony language.

Pony supports constructors (by convention the name is create, but alternately named

constructors are supported) with the program entry point (The main function in other

languages) is set to be the constructor of Main. Going through the combinations of

functions, we see that the instance of the actor Main is able to invoke both synchronous

(functions) and asynchronous (behaviours) methods of itself, but is unable to invoke

functions of other actors like an instance of A2, which we create a new instance of by

calling A2.create(). Finally the Env class is used to encapsulate the ability to print

to standard input, output and error.

2.2.1 Pony Capabilities

In order to ensure that data-races cannot occur, Pony utilises a system of capabilities

that are associated with all basic types, for example Foo val or Bar ref, as well as

allowing modifiers to denote the property that a value is unaliased by adding a caret

after the capability, such as Baz tagˆ. Pony’s capabilities model the operations that

are denied on aliases to the current object. As an example, consider an isolated object

Foo iso, this denies read and write aliases both locally and globally, so no other aliases

can exist to the object. A reference object Bar ref allows all local aliases to the object

within the same actor, but does not permit any global read or write aliases. As a final

example, an object of type Baz tag permits all local and global aliases, however as a

result their contents cannot be modified or even read, only the identity (address) of the

object can be known. These behaviours are summarised in table 1 and illustrated in the

below example:

1 class LightSwitch

2 fun ref toggle() =>

3 // methods modifying local state must be declared ref

4

5 fun box is_on(): Bool val =>

6 // methods that only read the state

7 // may be declared box (default)
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Deny global read/

write aliases

Deny global

write aliases

Allow all

global aliases

Deny local read/write aliases iso

Deny local write aliases trn val

Allow all local aliases ref box tag

(Mutable) (Immutable) (Opaque)

Table 1: Capability matrix, reproduced from [4]. Capabilities in italics are sendable.

8

9 actor LightSwitchToggler

10 be receive_iso(ls: LightSwitch iso) =>

11 // iso objects can both read and modify the object

12 ls.toggle()

13 ls.is_on()

14

15 be receive_val(ls: LightSwitch val) =>

16 // val objects can read, but not modify the object

17 ls.toggle() // this line fails to compile

18 ls.is_on()

19

20 be receive_tag(ls: LightSwitch tag) =>

21 // tag objects can neither read nor modify the object

22 ls.toggle() // this line fails to compile

23 ls.is_on() // this line also fails to compile!

An important property gained from the presence of capabilities is the ability to

determine which types can be sent to other actors. As shown in table 1 and the example

above, any type with one of the three capabilities iso, val or tag can be sent to

another actor. Isolated objects (iso) can be trivially sent to other actors since no read

or write aliases exist to them in the entire program. Value objects (val) can be sent

since any remaining references in the sender are guaranteed to not be able to modify the

sent object, and neither will the receiving actor, hence this is safe to send since multiple

concurrent reads are a safe operation. Finally, objects with the tag capability can also

be sent for the opposite reason as isolated objects: any number of aliases can exist to

this object but cannot even read the contents of the object, so sending it to other actors

cannot cause the underlying structure to be modified.

All actors in Pony are visible to other actors with capability tag but see themselves

as ref. As a consequence, actors can fully modify their own state (but cannot see inside

any other actors), can be passed around as first-class values and executed in parallel

without worrying about data-races.

Finally, if a type does not specify a capability, it is assigned the default value for that

type. As we saw in the earlier example, the capability for the type Env was omitted.

In Pony a class may specify its default capability which, if omitted, means a class is

mutable (ref) by default. The Env class on the other hand explicitly specifies a default
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capability of val which allows it to be sent to other actors as in our example. This is

just syntactic sugar, so is not of interest in a formal model and we omit further mention

of it.

2.2.2 Viewpoint Adaptation

As motivation for the need for viewpoint adaptation, let us first consider the two example

heaps shown below. We use the term α to refer to an actor, in both cases below the

only actor, and ω to refer to an object. Later we will use ι as a general term to refer to

either an actor or an object without distinguishing which. We use arrows to illustrate

the existence of fields (f) or local variables (x) in actors and objects, annotated with

their corresponding capability.

α

ι1

x, val

ι2

f, ref

Figure 1: Example Heap 1.

α

ι1

x, ref

ι2

f, iso

Figure 2: Example Heap 2.

In figure 1 we have a variable x of capability val, which in turn has a field of capability

ref. If the program attempts to access x.f, we need some method for determining the

capability of the resulting temporary alias. We use the viewpoint adaptation operator

(.) to give us this capability: in this case val . ref. Plainly this cannot give ref, since

val guarantees to be immutable, so in this case we give back the type of the source

object, namely val . ref = val.

The second example figure 2 is similarly structured, but with different capabilities.

Here we have that the type of the same temporary alias would be ref . iso. On initial

inspection we may think that we once again end up with the type of the receiver (ref),

however we can actually do better than that in this case. Since a field read gives back a

temporary rather than a named local variable we can in fact give back an iso temporary.
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Field

Origin iso trn ref val box tag

iso iso tag tag val tag tag

trn iso trn box val box tag

ref iso trn ref val box tag

val val val val val val tag

box tag box box val box tag

tag ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 2: Viewpoint adaptation, reproduced from [4].

The full table of viewpoint adaptation operators is given in table 2, note how since

we cannot read or write to fields of tag objects, we simply say that tag.κ is undefined.

This definition of the viewpoint adaptation operator is mostly given through exam-

ples, making it difficult to justify certain values of the table. We must consider both the

capability of the object being accessed as well as that of the field in order to guarantee

that field reads and writes do not break guarantees about what objects are visible to

actors during program execution and in order to ensure data-races cannot occur. For

this reason we will later describe a more principled approach to deriving the values in

the table, in section 3.11.

Due to the strict guarantees it must make, there are challenges involved with extend-

ing viewpoint adaptation to support extensions to the model such as type expressions

(intersection, union and tuples) since this could potentially cause a variable to have a

number of different capabilities (this is elaborated on in section section 2.6.4).

2.2.3 Formal Model

A subset of the Pony language is already modelled covering a number of features: the

existence of actors with functions, behaviours and constructors, as well as capabilities,

viewpoint adaptation, aliasing and a number of proofs relating to the well-formedness

of the visibility of objects and the well-formedness of the heap [4]. Despite this, there

remains a large number of important language features that are unimplemented in the

formal model:

• Both structural and nominal subtyping are supported in Pony through interfaces

and traits.

• Intersection types provide a way of combining traits and interfaces in order to

ensure that a variable satisfies multiple definitions simultaneously.

• Union types allow the programmer to declare that something may satisfy one of

the provided elements, and is commonly used together with the None class to

represent optional values that may or may not be present.
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• Tuples are supported in Pony in order to allow ad-hoc collections of objects (for

example, in order to allow for multiple return values from a method call).

• Generics are heavily used throughout Pony’s standard library and the ability to

set default values on generic type parameters.

• Partial application of functions is supported in Pony, allowing users to supply some

number of functions to the function before invoking it later with the remaining

arguments.

• Pony supports delegates, where if a function is not found to be defined in a class,

it instead attempts to call the method in the specified delegate.

2.3 Covariance and Contravariance

Covariance and contravariance [11, 12] refer to the ability of code to substitute a more

or less specialised type respectively in place of that declared by a class of method.

Covariance is used to indicate that a subtype of the expected type may be provided

instead of that originally declared. Consider an example of an inheriting class overriding

a method in Java, which allows for covariant return types. If a base class had declared

a method Foo thing() then a deriving class can happily override such a method with

a return type that is a subtype of Foo, e.g. Bar thing(), for Bar subtype of Foo.

Contravariance refers to the exact opposite of covariance, that a super-type may be

provided instead of the type expected by the declaration. To use the same example as

before, method arguments in some languages may be contravariant when being overrid-

den in a base class, a method declared void thing(Bar arg) may be overridden with

void thing(Foo arg) in a derived class. This is safe since any objects calling thing

in the base class must pass a Bar object, which is guaranteed to be a subtype of Foo

and hence may be safety treated as such.

As a concrete example, consider the types B0, B1, B2, C0, C1, C2 with the following

subtyping relationships (where ≤ indicates subtyping, is read ”is a subtype of”):

B2 ≤ B1 ≤ B0 C2 ≤ C1 ≤ C0

We can now construct a base class A0 with a method overridden by the deriving

class A1 displaying both covariance and contravariance in a Java-like language:

1 class A0 {

2 C1 m(B1 x) {

3 ...

4 }

5 }

6

7 class A1 extends A0 {

8 C2 m(B0 x) {

9 ...

10 }

11 }
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As explained previously, the derived class is able to utilise covariant return types to

specify a more specialised instance (C2 instead of C1) while contravariance of parameter

types allows the argument to be of a less specialised type (B0 instead of B1). Note also

that this can be expressed using arrow types, where C2 → B0 ≤ C1 → B1, or more

generally:

T1’ ≤ T1 T2’ ≤ T2

T1→ T2’ ≤ T1’→ T2

That is, a function taking a T1 and returning a T2’ is a subtype of a function taking

a T1’ and returning a T2 if both T1’ is a subtype of T1 and that T2’ is a subtype of

T2.

2.4 F-Bounded Polymorphism

F-Bounded Polymorphism, introduced by Canning et al. [2], is an extension to bounded

quantification (Cardelli and Wegner [3]) that allows for a more strict return type from in-

herited functions. As an example, consider the below example of bounded quantification

for a Cloneable interface:

1 public interface Cloneable {

2 Object clone();

3 }

4

5 public class String implements Cloneable {

6 public Object clone() {

7 ...

8 }

9 }

The above interface specifies a clone method, however since the interface has no

knowledge of the deriving class it is impossible to return any class more specialised

that Cloneable. With F-bounded polymorphism (also known as recursively bounded

quantification), the interface now changes to accept a generic parameter satisfying the

same Cloneable interface as such:

1 public interface Cloneable<T extends Cloneable<T>> {

2 T clone();

3 }

4

5 public class String implements Cloneable<String> {

6 public String clone() {

7 ...

8 }

9 }

By giving the interface knowledge of the type that implements it, we allow for a

well-typed return type of the clone method while still keeping the interface generic.
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However notice that this only permits a single level of type-exactness unless the String

class itself is generic, consider the following extensions extending the basic String class:

1 public class SpecialStringOne extends String {

2 public String clone() {

3 ...

4 }

5 }

6

7 public class SpecialStringTwo extends String

8 implements Cloneable<SpecialStringTwo> {

9 ...

10 }

Since String does not take an argument, there is no way for SpecialStringOne

to inform the interface that a more exact type should be used instead. As an alternative

we may instead suggest SpecialStringTwo, that our derived class simply reimple-

ment the interface. This however does not even compile as the class is now implementing

the same interface twice, which is disallowed in Java due to the erasure of generic types

at runtime.

2.4.1 Covariance and Contravariance in F-Bounded Polymorphism

In languages such as C# [11], the programmer may explicitly specify the variance of

generic classes at the declaration site as Foo<in T> or Foo<out T> to indicate con-

travariance and covariance respectively, with Foo<T> declaring the class to be invariant

(that is, neither covariant nor contravariant) over the type parameter.

Java on the other hand supports a form of use-site variance, where the variance of a

type is implicitly existentially quantified [12]. Consider the following example adapted

from one put forward by Kennedy and Pierce [12]:

1 interface Func<A, B> {

2 B apply(A a);

3 }

4

5 class C {

6 }

7

8 class D extends C {

9 Func<? super D, ? extends C>

10 cast(Func<? super C, ? extends D> f) {

11 return f;

12 }

13 }

In this case, the ? extends T is used to declare covariance over the type T, with

? super T specifies contravariance. This could also be seen in the example of F-bounded
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polymorphism earlier, as the type parameter of the interface is usually specified to ensure

it does in fact extend from the interface specified.

2.4.2 Issues with F-Bounded Polymorphism

Usage of F-bounded polymorphism in programming is highly unintuitive to the user, and

even worse subtyping becomes undecidable under the presence of recursive inheritance

and variance [8, 12]. Consider the following example from Greenman et al. [8], written in

a C#-like language making use of covariance (out), contravariance (in) and F-bounded

polymorphism:

1 public interface Equatable<in T> {

2 ...

3 }

4

5 public class List<out T> : Equatable<List<Equatable<T>>> {

6 ...

7 }

8

9 public class Tree : List<Tree> {

10 ...

11 }

We first declare an Equatable interface with a contravariant type parameter, then a

class List with a covariant type parameter. In order to allow for lists to be comparable

with other lists of possibly different types, we use F-bounded polymorphism to specify

that lists are equatable with a list of anything that is equatable with the argument

type. Finally we create a simple Tree class which simply stores the set of child nodes

by inheriting from List<Tree>, plus potentially some per-node information which we

have omitted.
Consider a compiler attempting to compile the above code. Imagine a judgement of

whether Tree is a subtype of List<Equatable<Tree>> was needed (e.g. checking
that assignment from the result of a method call is well-typed). The following sequence
of steps is one that a type-checker could conceivably take in attempting to prove the
aforementioned judgement:

Tree <: List<Equatable<Tree>>

List<Tree> <: List<Equatable<Tree>> (inheritance)

Tree <: Equatable<Tree> (covariance)

List<Tree> <: Equatable<Tree> (inheritance)

Equatable<List<Equatable<Tree>>> <: Equatable<Tree> (inheritance)

Tree <: List<Equatable<Tree>> (contravariance)

Clearly this process will never terminate unless the compiler explicitly keeps track of

all previous steps taken, since the first and last steps of the sequence are identical (the

loop does in fact however correspond to a valid infinite proof of subtyping [8]). Such

loops pose a problem for implementation writers of type-checking for languages such as
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C# and Java, and indeed examples such as this will cause mainstream compilers for

these languages to crash.

2.4.3 Materials and Shapes

Materials and Shapes, introduced by Greenman et al. [8], propose a much more intuitive

solution to the complexities inherent in usage of F-bounded polymorphism. It is observed

that usage of F-bounded polymorphism is limited to a subset of interfaces, such as Java’s

Comparable interface [14]. One example of this usage is in order to enforce that the

type of the argument or return type is the same as the deriving type, also known as the

self type. It can also be observed that these kinds of interfaces will rarely appear as the

parameter to a generic class, for example it would be highly unusual to have a variable

of type List<Equatable<Tree>>, one would question why the the author did not

simply write List<Tree> instead.

The solution proposed introduces a distinction between Shapes, which identify

classes utilising F-bounded polymorphism such as Java’s Comparable, from Materials,

which form the remainder of classes such as List. Greenman et al. note that this

separation of purpose is already present in a large amount of existing code and would

likely not break any existing code were it to be retrofitted to an existing language

such as Java. Additionally, by only permitting materials to be used as generic type

parameters we are able to simplify type-checking by removing the requirement of

allowing recursive inheritance for anything other than shapes.

Utilising our earlier Comparable example, we would now alter our code to declare

the interface as a shape:

1 public shape Cloneable<T> {

2 T clone();

3 }

4

5 public class String implements Cloneable<String> {

6 public String clone() {

7 ...

8 }

9 }

The declaration of Cloneable can now be simplified (note that the type parameter

of the shape is now implicitly bounded to inherit from itself rather than requiring the

complex interface declaration), however this may not be desirable if additional non-

recursive type parameters are wanted. The main benefit is achieved by disallowing

recursive inheritance on material classes (which are simply defined as any non-shape

class to allow retrofitting to existing code), which would improve error messages and

prevent abnormal and non-idiomatic usage of inheritance while removing the need to

declare usage of unintuitive F-bounded polymorphism.
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2.5 Structural and Nominal Subtyping

Both structural and nominal subtyping [13] are supported in Pony as a method of

allowing the programmer to express the intention of provided interfaces.

Structural subtyping allows for the development of interfaces and automatic intro-

duction of subtyping between interfaces and classes implementing interface methods

without the programmer having to explicitly inherit the interface. This is useful for

cases where the original programmer may not be aware of such interfaces existing or

should not need to care for the purpose of interfaces used only in cases like utility

methods, where only a subset of behaviour is actually required.

In contrast, nominal subtyping refers to the practice of explicitly specifying the

subtyping relation. This is done in Pony by defining a trait in an identical way to

how interfaces are specified. In this case, a class explicitly inherits the trait and hence

guarantees to provides all methods of that trait, something that can be checked by

the compiler. Nominal subtyping has the advantages that design intent is explicitly

preserved and that the use of nominal subtyping prevents the accidental introduction

of subtyping between unrelated types, however can cause rigidity especially when third-

party classes are provided which cannot be easily modified.

As an example of how Pony utilises structural and nominal subtyping, consider the

following example from Pony’s online documentation:

1 trait Named

2 fun name(): String val =>

3 "Somebody"

4

5 class Alice is Named

6

7

8

9 class AliceUsage

10 fun use_named(x: Named ref) =>

11 ...

12

13 fun call_with_alice() =>

14 var alice = Alice.create()

15 this.receive_named(alice)

1 trait Named

2 fun name(): String val =>

3 "Somebody"

4

5 class Bob

6 fun name(): String val =>

7 "Bob"

8

9 class BobUsage

10 fun use_named(x: Named ref) =>

11 ...

12

13 fun call_with_bob() =>

14 var bob = Bob.create()

15 this.receive_named(bob)
16 // ˆ fails to compile

In the left example, class Alice automatically inherits the function name from

the trait Named, even though Alice did not explicitly provide it (although they may

do so to override the implementation in Named, or if no default implementation was

provided). As shown, an instance of Alice may be passed to a function expecting a

Named, since subtyping is introduced by nominal inheritance. In the case of the right

example however, Bob does not inherit nominally from Named and so may not be passed

to the use named function as it expects an argument of type Named. This is because,
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despite Bob providing all the same methods as Named, subtyping must be introduced

from traits explicitly by using the is keyword.

1 interface Named

2 fun name(): String val
3

4 class Charlie

5 fun name(): String val =>

6 "Charlie"

7

8 class CharlieUsage

9 fun use_named(x: Named ref) =>

10 ...

11

12 fun call_with_charlie() =>

13 var charlie = Charlie.create()

14 this.receive_named(charlie)

Now suppose we modify our example to make Named an interface to instead utilise

structural subtyping. In this case, Charlie is implicitly a subtype of Named and may

be passed to a function like use named expecting an argument of type Named despite

the fact it never explicitly declared the subtyping relationship. Note that Charlie

could also have explicitly inherited Named using the is keyword, which would cause

the compiler to explicitly check that Charlie was a subtype of Named and cause an

error otherwise. This can also be used to inherit the default interface implementations

(for example, if Named had provided a function body then Charlie could simply

inherit explicitly using the is keyword and avoid specifying the method body in the

class itself).

2.5.1 Modelling Challenges

Since traits and interfaces are allowed to extend other traits and interfaces, even if they

are only declared later in the program, which gives rise to the potential for infinitely

recursive inheritance trees. These are explicitly disallowed by Pony and will have to be

disallowed in the model.

2.6 Intersection, Union and Tuple Types

Pony’s type system allows for the presence of intersection, union and tuple types in type

expressions as a way of expressing more complex types without introducing entire new

classes.

2.6.1 Intersection Types

Intersection types provide an easy way of specifying that a type satisfies several traits

or interfaces simultaneously and are used throughout Pony’s standard library. Consider

the following example using interfaces from Pony’s standard library.
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1 var value: (Hashable box & Stringable box)

This code defines a variable called value with type (Hashable box &

Stringable box), that is to say that it guarantees that value satisfies both the

Hashable box interface and that of Stringable box (and hence both the string

and hash functions are available for users of value).

From a modelling perspective, intersection types are used to indicate that a type is a

subtype of both inner types simultaneously, for example a variable of type (Hashable

box & Stringable box) would naturally be a subtype of both Hashable box and a

subtype of Stringable box, and by commutativity a subtype of (Stringable box

& Hashable box).

2.6.2 Union Types

Union types have a number of uses in Pony, the simplest and most well-known of which

is to provide a type-safe way of encoding that a value may or may not be present. For

example, consider a method get name which may either return a String val or else

nothing (represented in Pony using the None val type):

1 fun get_name(): (String val | None val) =>

2 ...

Union types specify that a type is a subtype of either of the inner types, for example

(String val | None val) could be used to indicate that the value is either a String

val or a None val (or even possibly a subtype of both, although that makes little sense

in this example). The subtype relation with union types is the opposite of intersection

types, so in this case both String val and None val would be a subtype of (String

val | None val), but not the other way around.

2.6.3 Tuple Types

Tuples (also known as product types) provide a straight-forward way of creating ad-hoc

temporary collections of objects for the purpose of grouping them together. A good

example of this is to simulate the existence of multiple return values. Consider our

get name example from earlier, however now instead of optionally returning a String

val we wish to return a pair of them (separating first and last names, for example).

We can express this with the below signature:

1 fun get_name(): (String val, String val) =>

2 ...

These types are formed by creating a tuple of two values, for example (String val,

String val) is the type of a two-element tuple containing elements of type String

val. Unlike union or intersection types, in this case neither the tuple or its elements

are subtypes of one-another.

2.6.4 Modelling Challenges

In Pony, capabilities are attached to the inner types in type expressions, which allows ex-

pressions potentially dangerous combinations of capabilities to be constructed. Consider
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the following example we discovered:

1 class Data

2 fun ref modify_data() =>

3 ...

4

5 fun box read_data() =>

6 ...

7

8 actor DataReader

9 be read_from_data(data: Data val) =>

10 data.read_data()

11

12 actor Main

13 new create(env: Env val) =>

14 var data: (Data ref & Data val) = Data.create()

15 DataReader.create().read_from_data(data)

16 data.modify_data()

Note that since we are able to construct a value of type (Data ref & Data val),

we permit the variable data to have two reference capabilities simultaneously. By the

subtyping relationships defined previously, we are able to pass a val capability object

to the DataReader class (which allows it to read the data) while still retaining a

ref capability to allow us to locally modify the data. We now have a data-race that

is accepted by the current Pony compiler, the result that DataReader reads is non-

deterministic and could be nonsensical depending on the definitions of read data and

modify data. This poses a problem from the point of view of modelling these types

since it in theory allows us to bypass the protections offered by viewpoint adaptation

and Pony’s capabilities. We elaborate on this further and present a potential solution

similar to that adopted by the Pony compiler in section 8.8.

A further issue identified concerning tuples is examined in section 7.6, however re-

quires a deeper understanding of Pony’s type system so we omit discussion of it here.

2.7 Pony Generics

Pony supports generic types, where classes may take a number of type parameters, which

may in turn take an optional constraint and default value to take if no type parameters

are specified at the use-site. Consider an example of the Map type alias from the Pony

online documentation, which has the following definition:

1 type Map[K: (Hashable box & Comparable[K] box), V]

2 is HashMap[K, V, HashEq[K]]

This example shows a type alias (similar to typedef or using statements in C++)

declaring a new generic type Map. This generic type takes two parameters, a key type

K and a value type V and is defined in terms of existing HashMap and HashEq classes.

Additionally we constrain the type of the key to ensure it satisfies the Hashable box
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and Comparable[K] box interfaces, which ensure that the key provides the hash and

compare methods respectively.

2.7.1 Modelling Challenges

The modelling of generics in Pony is simplified by the fact that generics in Pony are

invariant (unlike earlier examples in C# and Java, for example, where variance could

be explicitly specified at the declaration site and use-site explicitly).

There are many important extensions to the basic model of generics that can be

potentially omitted to make initial modelling of generics simpler:

• Bounds on generics (e.g. the (Hashable box & Comparable[K] box) example

previously) could be omitted in order to eliminate the complexity caused by en-

suring that these bounds are satisfied, which will allow the modelling of lists and

other simple generic collections

• Default values on generic type parameters could also be omitted to simplify the

modelling of usage of generic types, and should be easily be re-incorporated at a

later time.

One potential issue with modelling generics is the need to allow for generic viewpoint

adaptation. Pony allows specifying expressions such as this->A to allow the code to

specify the capability of the type as seen at the call site, which is not supported by the

current model.

2.8 Self Types

One of the most common uses of F-bounded polymorphism noted by Greenman et al.

[8] is to be able to use the type of the deriving class in an abstract interface. Self

types [1] perform exactly this purpose, providing a This type which represents the type

of the runtime object that derived it. As an example, consider the definition of our

Cloneable interface from earlier, rewritten to use self types in a Java-like language:

1 public interface Cloneable {

2 This clone();

3 }

4

5 public class String implements Cloneable {

6 public String clone() {

7 ...

8 }

9 }

Note that by allowing the interface to implicitly reference the type of the derived

class, we avoid the need for the interface to take a type parameter and remove the need

for F-bounded polymorphism entirely in this case. It should however be noted that this

does not remove all uses of F-bounded polymorphism, since it only simplifies a subset

of the behaviour that can be simulated with F-bounded polymorphism, for example any

18



mutually recursive constraints would not be able to be expressed solely with the use of

a This type.

2.9 Prolog

To ease the burden of proving many of the simple lemmas we wish to use regarding

capabilities, we will utilise Prolog to systematically check for counterexamples where it

is feasible to exhaustively check the solution space. As an example, consider the formula

A ∧ (B ∨ C) =⇒ D, i.e. if A and either B or C hold, then D must also hold. We can

express this in the following Prolog rule:

1 check_lemma_example :- A, (B; C), \+D.

All rules in Prolog must have a name (check lemma example in this case), we then

encode negation of the required formula by converting the implication to a conjunction

and negating the right hand side: A ∧ (B ∨C) =⇒ D ≡ ¬(A ∧ (B ∨C) ∧ ¬D) (we use

commas to indicate conjunction, semicolons to indicate disjunction). If this rule can be

shown satisfiable then we have found a case where the formula does not hold, and hence

our lemma is invalid.

For the Prolog code for a number of the lemmas shown later, refer to appendix D.
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3 Base Model

We now present PonyG , an extension of the original model (PonyS ) presented by

Clebsch et al. [4]. We begin in this section by simplifying and expanding upon the

model appropriately, in the process making it more suitable for the extensions we will

be adding later. We then in subsequent sections extend this model, first with inheritance

(section 5), then with union types (section 6), tuples (section 7) and intersection types

(section 8). At each step we reconsider the definitions presented previously and extend

them as necessary.

3.1 Syntax

P ∈ Program ::= CT AT

CT ∈ ClassDef ::= class C F K M

AT ∈ ActorDef ::= actor A F K M B

RS ∈ RunTypeID ::= A | C
DS ∈ DeclTypeID ::= A | C
DT ∈ DeclType ::= DSλ

F ∈ Field ::= var f : DT

K ∈ Ctor ::= new k(x : DT)⇒ e

M ∈ Func ::= funκ m(x : DT) : DT⇒ e

B ∈ Behv ::= be b(x : DT)⇒ e

n ∈ MethID ::= k | m | b
λ ∈ CapMod ::= κφ

κ ∈ Cap ::= iso | trn | ref | val | box | tag
φ ∈ AliasMod ::= − | ε
e ∈ Expr ::= this | x | x = e | null | e; e

| e.f | e.f = e | recover e
| e.m(e) | e.b(e) | RS.k(e)

E[·] ∈ ExprHole ::= x = E[·] | E[·]; e | (E[·]) | E[·].f
| e.f = E[·] | E[·].f = t | E[·].n(t)

| e.n(t, E[·], e) | recover E[·]

Figure 3: Syntax.

The syntax of PonyG programs is presented in figure 3, with the naming convention

presented in figure 4. Like Igarashi et al. [10], we use the notation x to indicate a

comma-separated list of xi in sequence.

We begin by discussing the syntax for PonyG programs. A program is comprised of

a set of definitions of classes and actors:

• Classes in PonyG are near identical to their object-oriented counterparts, consist-

ing of a class name as well as fields, constructors, methods.

• Actors are simply classes with an additional set of asynchronously executing meth-

ods called behaviours (introduced with be rather than fun).
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C ∈ ClassID k ∈ CtorID

A ∈ ActorID m ∈ FuncID

f ∈ FieldID b ∈ BehvID

this, x ∈ SourceID n ∈ CtorID ∪ BehvID

t ∈ TempID y, z ∈ LocalID

Figure 4: Identifiers.

Pony supports named constructors which are invoked by prefixing the class or actor being

constructed (e.g. for a class Foo with a named constructor k1 taking no arguments, the

expression Foo.k1() constructs a new instance of the class).

In order to differentiate between types that can exist as static types and those that

can exist at runtime, we first introduce declared symbols (DS), which refer to the id of

the class or actor (without a capability), and declared types (DT), which for now may

be an actor or class. Runtime symbols (RS) for the time being are defined identically

to that of declared symbols (DS), however this will change when types that cannot exist

at runtime are introduced in later sections (such as traits and interfaces see section 5).

For the remainder of the syntax, we use only declared types with the exception of the

definition of constructor expressions (which obviously can only construct objects that

can exist at runtime).

All basic declared types in Pony are comprised of a symbol (also known as a type

identifier, DS) and a capability. Capabilities allow us to track what operations can be

applied on a type, what aliases can be made with it, whether it is mutable and more.

Capabilities are denoted as λ and are comprised of a basic capability κ and an optional

ephemeral modifier φ (see section 3.3 for more details).

3.1.1 Treatment of Null

The Pony language compiler does not support an uninitialised null value such as that

found in other object-oriented languages like Java and C++. This means that the

compiler must perform extra work to ensure that class and actor constructors initialise

all fields before they could be accessed. In PonyG we avoid the additional complexity

added by these checks simply by allowing the existence of null. Note that this obviously

does not hinder our goal of avoiding data-races since trying to access fields of null will

simply result in execution becoming stuck.

As an aside, we will note after the introduction of union types that it is indeed

possible to remove null from the language with some additional effort, but we do not

attempt to perform such an extension in this report. See section 6.10

3.1.2 Comparison to PonyS

In PonyS (the original model for the Pony language, presented by Clebsch et al. [4]),

there was no need to split types into types that could be represented in the program

and types that could exist at runtime since as figure 3 shows, they are the same before

any extensions are added.
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We present a slightly modified definition of capabilities compared to the original

paper, which simplifies the handling of ephemeral modifiers and gains us more expressive

power (see section 3.3). This also simplifies the definition of types, since we no longer

distinguish between types and types with ephemeral modifiers (Type and ExtType in

PonyS ).

3.2 Operational Semantics

χ ∈ Heap = Addr → (Actor ∪Object)

σ ∈ Stack = ActorAddr · Frame

ϕ ∈ Frame = MethID × (LocalID → Value)× ExprHole

LocalID = SourceID ∪ TempID

v ∈ Value = Addr ∪ {null}
ι ∈ Addr = ActorAddr ∪ObjectAddr

α ∈ ActorAddr

ω ∈ ObjectAddr

Actor = ActorID × (FieldID → Value)×Message × Stack × Expr
Object = ClassID × (FieldID → Value)

µ ∈ Message = MethodID ×Value

Figure 5: Runtime entities.

The entities used in the operational semantics are defined in figure 5 and are for now

unchanged from PonyS . We use σ to denote an actor with a set of stack frames for the

currently executing behaviour (i.e. σ = α · ϕ). A stack frame contains the identifier of

the current method or behaviour being executed, a mapping to specify the value of local

variables and finally the expression to be executed when the next stack frame finishes

executing and returns a value (empty if we are the top stack frame).

Values may be either an address (pointing to a class or actor instance), or the

special constant null (see section 3.1.1). Actors and Objects share the same basic

layout: each keeps track of its type as well as the value of all fields it contains. Actors

must additionally keep track of the set of messages received but not processed, the

stack frames for the current message being processed and the expression currently being

executed.

Figure 6 on page 25 specifies how a PonyG program executes in a given heap χ. The

Global rule is used to choose some actor capable of progressing and executing a single

step in that actor, allowing arbitrary interleaving of the executed steps. The remaining

rules then have the form χ, σ, e  χ′, σ′, e′, specifying how an expression e executes

given the heap, an actor and its associated stack frames.

The remaining rules handle execution within the stack frames (σ) of a single actor:

• The ExprHole rule allows us to focus on and evaluate a part e of a larger overall

expression E[e]. For example we may have that x1 = x2.f. We must first evaluate

the field lookup, so we invoke the ExprHole rule with e defined as x2.f, which
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in turn would invoke ExprHole yet again to evaluate the local variable x2 to a

temporary.

• The rules for field and local variable lookup, handling of null, sequential com-

position and assignment to both local variables and fields should not come as

a surprise, they simply manipulate the top of the current actor’s stack (ϕ) and

perform lookups into the heap (χ). What may be surprising is the usage of the

temporary identifier t, which we defer to section 3.2.1, and the fact that assign-

ment to local variables and fields returns the old value of the assignment. The

latter will be extremely useful as it allows us to perform a destructive read on

values, which in some cases may give us greater freedom to transfer ownership

of the released object, specifically due to unaliasing (section 3.6) and extracting

viewpoint adaptation (section 3.11.3).

• The Sync rule handles calling of synchronous methods (on object t with argu-

ments t within an actor. We get the type of the object (χ(ι) ↓1) and use this

to lookup the definition of the method m. We then construct a new stack frame,

assigning the this pointer and arguments appropriately, with an empty contin-

uation. The continuation on the current stack frame is replaced with the outer

expression being evaluated in order to ensure that we can resume execution once

the method being called is finished. Finally we construct the new stack with the

new and modified frames, and replace the executing expression with the body of

the method being called.

• Returning from synchronous methods is handled by the Return rule. In this case

we simply discard the topmost stack frame and substitute the result of the method

into the continuation provided, removing the continuation from the stack frame of

the caller.

• The rule Async handled calling a behaviour on a given actor. Instead of con-

structing a new stack frame as we did in Sync, in this case we simply append our

behaviour identifier and argument values onto the message queue of the actor.

• For actually executing behaviours, the Behave rule is required. Since we may only

execute one behaviour at a time, we require that our stack and currently executing

expression are both currently empty. The actor then takes the first behaviour

identifier and argument values from the front of its message queue and constructs

a new stack frame to execute the given behaviour. When a behaviour is finished

executing (i.e. there is only a single stack frame and temporary object remaining,

so no other rule would apply), we invoke the ReturnBe rule to terminate the

behaviour.

• The rules for constructing an object (Ctor) and an actor (Ator) are similar to

those used for calling methods and behaviours respectively (Sync and Async)

but with the additional step of constructing the new instance in the heap and

initialising its fields with the constant null.
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• The only rule we have yet to consider is that of Rec, which simply discards a

recover block surrounding a temporary when the expression within the block

has finished evaluating. Recovery will be discussed in more detail later (see sec-

tion 3.9).

3.2.1 Temporaries

The majority of the rules defined in figure 6 operate purely in terms of temporaries

(with the exception of those dealing explicitly with local variables) rather than allowing

local variables to be used in place. This simplifies the execution of expressions involving

local variables and ensures that we maintain a constant order of evaluation. Consider

the expressions x1.f = (x1 = x2) and x1.f.f = (x1 = x2): If local variables were allowed

to be used in place of temporaries, the lookup of x1 in the first case would be deferred

until after the reassignment, whereas the lookup of x1.f in the second would be executed

immediately, leading to an inconsistency.

As we will see in section 4.3, this will also help us by simplifying the number of cases

to consider when proving properties of our system.

3.2.2 Comparison to PonyS

In the original operational semantics presented in PonyS , each frame would store the

continuation of the frame it would return into rather than the frame the expression

actually executed in. This made the operational semantics marginally smaller but was

unintuitive and complicated the definition of well-formed heaps (see section 3.16).

We also add the ReturnBe rule (which the original model omitted) and Local

(which was previously avoided by allowing occurrences of temporaries to also be local

variables, as we discussed above in section 3.2.1).
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χ, σ · ϕ, e χ′, σ · ϕ′, e′

χ, σ · ϕ, E[e] χ′, σ · ϕ′, E[e′]
ExprHole

χ, χ(α) ↓4, χ(α) ↓5 χ′, σ, e

χ→ χ′[α 7→ (σ, e)]
Global

t /∈ ϕ ϕ′ = ϕ[t 7→ null ]

χ, σ · ϕ, null χ, σ · ϕ′, t
Null

χ, σ, t; e χ, σ, e
Seq

t /∈ ϕ ϕ′ = ϕ[t 7→ ϕ(x)]

χ, σ · ϕ, x χ, σ · ϕ′, t
Local

t′ /∈ ϕ
ϕ′ = ϕ[x 7→ ϕ(t), t′ 7→ ϕ(x)]

χ, σ · ϕ, x = t χ, σ · ϕ′, t′
AsnLocal

t′ 6∈ ϕ ϕ′ = ϕ[t′ 7→ χ(ϕ(t), f)]

χ, σ · ϕ, t.f χ, σ · ϕ′, t′
Fld

t′′ 6∈ ϕ ϕ′ = ϕ[t′′ 7→ χ(ϕ(t), f)]

χ′ = χ[ϕ(t), f 7→ ϕ(t′)]

χ, σ · ϕ, t.f = t′  χ′, σ · ϕ′, t′′
AsnFld

Mr(χ(ϕ(t)) ↓1, m) = (x, e)

ϕ′′ = (m, [this 7→ ϕ(t), x 7→ ϕ(t))], ·)
ϕ′ = (ϕ ↓1, ϕ ↓2, E[·])

χ, σ · ϕ, E[t.m(t)] χ, σ · ϕ′ · ϕ′′, e
Sync

ϕ ↓3= E[·] t′ /∈ ϕ
ϕ′′ = (ϕ ↓1, ϕ ↓2[t′ 7→ ϕ(t)], ·)
χ, σ · ϕ · ϕ′, t χ, σ · ϕ′′, E[t′]

Return

α = ϕ(t) χ(α) ↓3= µ

χ′ = χ[α 7→ µ · (b, ϕ(t))]

χ, σ · ϕ, t.b(t) χ′, σ · ϕ, t
Async

A = χ(α) ↓1 (n, v) · µ = χ(α) ↓3
Mr(A, n) = (x, e)

ϕ = (n, [this 7→ α, x 7→ v], ·)
χ, α, ε χ[α 7→ µ], α · ϕ, e

Behave

ω 6∈ dom(χ) f = Fs(C)

Mr(C, k) = (x, e)

χ′ = χ[ω 7→ (C, f 7→ null)]

ϕ′′ = (k, [this 7→ ω, x 7→ ϕ(t)], ·)
ϕ′ = (ϕ ↓1, ϕ ↓2, E[·])

χ, σ · ϕ, E[C.k(t)] χ′, σ · ϕ′ · ϕ′′, e
Ctor

α 6∈ dom(χ) f = Fs(A)

χ′ = χ[α 7→ (A, f 7→ null , (k, ϕ(t)), α, ε)]

t /∈ ϕ ϕ′ = ϕ[t 7→ α]

χ, σ · ϕ, A.k(t) χ′, σ · ϕ′, t
Ator

χ, σ, recover t χ, σ, t
Rec

χ, α · ϕ, t χ, α, ε
ReturnBe

ϕ(t) = null

χ, σ · ϕ, t.f χ, σ · ϕ, t
χ, σ · ϕ, t.f = t′  χ, σ · ϕ, t
χ, σ · ϕ, t.n(t) χ, σ · ϕ, t

Except

Figure 6: Execution.
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Deny global read/

write aliases

Deny global

write aliases

Allow all

global aliases

Deny local read/write aliases iso

Deny local write aliases trn val

Allow all local aliases ref box tag

(Mutable) (Immutable) (Opaque)

Table 3: Capability matrix. Capabilities on the diagonal are sendable.

3.3 Capabilities

The six basic capabilities in PonyG are modelled after the operations that are denied on

them both locally in the current actor and globally over many actors. The summary of

these properties are displayed in table 3.

• iso aliases deny read and write aliases both locally and globally, and as a result we

are able to guarantee that there is only a single stable way (i.e. through a named

variable rather than a temporary) of accessing the object in the entire program.

We are able to read or write from the object, since there is no possibility of data-

races, and we are able to give up our isolated ownership of the object in order to

either send it to other actors or convert it to any other capability.

• trn aliases deny read and write aliases globally, but only write aliases locally. As

with iso, no other actors will be able to read or write to the object so we are free

to mutate it, however we may not send a mutable alias to other actors since this

would allow us to read the object through our permitted local read aliases while

another actor mutates the object through the mutable alias we sent to them.

• ref permits similar operations to trn except in this case we are permitted to

make any number of mutable references within the local actor. The caveat here

is that there is no way to easily convert this into a form suitable for sending to

other actors, since there could be any number of mutable references remaining

that could result in data-races.

• val aliases deny the existence of mutable aliases both globally and locally. Since

we allow aliases in other actors we must be immutable and since we guarantee

that there are no other mutable references, we can easily send this to other actors

without needing to consider the possibility of introducing data-races.

• box aliases are similar to val in that they are also immutable and deny mutable

aliases globally in other actors, however in this case we allow there to exist local

mutable aliases in the same actor, and for this reason we do not allow box aliases

to be sent to other actors. As an example consider an object with two aliases with

capabilities ref and box in the same actor. Neither properties have been violated

since both allow mutable and immutable local aliases. If the latter capability were

to have been val, we would have violated the constraint that val denies local

mutable references (i.e. ref in this case).
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• Finally, tag aliases allow any number of aliases both globally and locally but

as a result it is not safe to even read from these aliases, they are opaque values.

Behaviours may be invoked on tag objects since they are executed asynchronously

by the receiver.

Note that the upper diagonal of table 3 is unfilled as it does not make sense to have

a capability that permits more operations in other actors than it does in the local actor.

We use the term κ to refer to a basic capability, refer to section 3.1 for the definition.

3.3.1 Ephemeral Modifiers

Although the above six capabilities cover the vast majority of our use cases, there are

two more cases of interest if we consider the capabilities of unnamed aliases (temporary

objects) such as those returned from constructors. We have two cases to consider:

• An object with zero stable (non-temporary) aliases in the entire program. This is

almost equivalent to the guarantee provided by iso, but with one alias removed.

We therefore call this iso−, where the ephemeral modifier − indicates that an

alias has been removed.

• An object with zero stable mutable aliases in the entire program. In this case this

is almost equivalent to the guarantee we provided for trn, but once again with

one alias removed. We therefore call this trn−.

We do not give these capabilities proper names as they are only of interest in a few

cases and cannot be used as the capability of any named variable or field.

We use the term λ to refer to a capability with an optional ephemeral modifier

attached (see section 3.1), however in many cases we are sure that a capability cannot

have an ephemeral modifier and so we simply use κ instead.

3.3.2 Ephemeral Capability Equivalence

For ease of notation we allow ephemeral modifiers on all six basic capabilities despite

the fact that only two of them are genuinely interesting. We therefore say that all other

capabilities (that is, not iso or trn) are equivalent to their ephemeral counterparts and

may be treated as one another interchangeably. This is shown in figure 7.

κ 6∈ {iso, trn}
κφ ≡ κφ′

Figure 7: Equivalence of ephemeral capabilities.

3.3.3 Comparison to PonyS

The six basic capabilities are unchanged from PonyS , however the original paper in-

tegrated ephemeral modifiers as part of a type rather than a capability. We find that
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having ephemeral modifiers be part of a capability rather than a type allows us to ex-

press a greater number of things and allows us greater freedom when we attempt to

define viewpoint adaptation in section 3.11.

3.4 Compatibility

Capabilities are defined in terms of what operations are denied to an object with such

a capability. It is therefore a natural extension to define which capabilities can co-exist

and alias the same object or actor. We say that two capabilities are locally or globally

compatible if it is safe for two distinct aliases of these capabilities to alias the same

object.

We start by simply defining local and global compatibility for the six basic capabil-

ities, addressing ephemeral capabilities later on in section 3.4.3.

3.4.1 Local Compatibility

α

ι

κ κ′

Figure 8: Local compatibility.

κ ∼` κ′
κ′

iso trn ref val box tag

κ

iso �

trn � �

ref � � �

val � � �

box � � � � �

tag � � � � � �

Table 4: Locally compatible capabilities.

We begin by defining local compatibility. Figure 8 represents the situation where

there are two paths from a single actor α to an object ι. Assuming these paths are

distinct, we then use local compatibility to describe the capabilities κ and κ′ that the

two paths may have to ensure we cannot cause race conditions to occur or break the

guarantees given by the capabilities themselves. A summary of this definition is given

in table 4.

• iso obviously cannot be locally compatible with anything besides tag, since we

guarantee that we hold the only stable and readable alias to the object in the

entire program.

• trn for the same reason cannot be compatible with iso, trn or ref since we

guarantee that we hold the only mutable alias in the entire program. Since we

are mutable we must also forbid other val aliases existing, else these could be
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sent to other actors causing a data-race to occur. We therefore only allow local

compatibility with box and tag in this case.

• ref must be compatible with itself, since we allow any number of mutable aliases

locally. Additionally for the same reasons as trn, we allow local compatibility

with box and tag but not val.

• val is both sendable and immutable. In order to ensure data-races cannot occur,

we must ensure that no other aliases to this object are mutable, which leaves us

locally compatible with val itself, as well as box and tag.

• box is also immutable like val, however since we are not sendable we do not require

that no mutable references exist. This means that in addition to the capabilities

locally compatible with val, we also allow trn and ref in this case.

• tag does not make any guarantees, and so we are able to simply make it locally

compatible with everything!

3.4.2 Global Compatibility

α α′

ι

κ κ′

Figure 9: Global compatibility.

κ ∼g κ′
κ′

iso trn ref val box tag

κ

iso �

trn �

ref �

val � � �

box � � �

tag � � � � � �

Table 5: Globally compatible capabilities.

We now define global compatibility in a manner similar to that used to define local

compatibility. In this case (shown in figure 9), we now assume that we have two paths

from two distinct actors α and α′ to an object ι. We now use global compatibility to

describe the capabilities κ and κ′ that the two paths may have. A summary of this

definition is given in table 5.

• Obviously if either of the capabilities are mutable (iso, trn or ref) then it is not

possible for the other actor to have anything other than a tag alias to the object,

since if they had a readable alias then a race condition could occur.
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• Along similar lines, if one capability is immutable (val or box) then we could not

have any mutable capability in the other actor, as this would be a race condition

once again. We could, however, have other immutable references in other actors,

which is perfectly fine as this cannot possibly cause a data-race (note that even

though box is not sendable, it is fine for it to exist elsewhere via subtyping from

val).

• Finally, as before, we allow tag compatibility with everything!

3.4.3 Compatibility with Ephemeral Capabilities and Types

Both here and in later sections we may wish to define both local and global compatibility

in terms of themselves (e.g. to describe compatibility over types in terms of that used for

capabilities). To avoid duplicating definitions (and later, lemmas), we use the shorthand

∼ (without a subscript on the relation) to indicate that either of ∼` or ∼g may be

substituted in place of all occurrences of ∼ in the equation in question.

Ephemeral modifiers are trivial to handle in the case of compatibility. As shown in

figure 10, we can simply remove the ephemeral modifier and consider compatibility of the

six original capabilities. Note the absence of a subscript on the compatibility relation,

which as discussed above we use to mean that both local and global compatibility satisfy

figure 10 if substituted for ∼.

κφ ∼ κ′ φ′ iff κ ∼ κ′ (where ∼=∼` or ∼=∼g)

Figure 10: Compatible capabilities with ephemeral modifiers.

Now that we have a definition of what capabilities can co-exist with one-another,

we must now expand this to entire declared types. The resulting definition is shown in

figure 11. This is not a particularly surprising definition: two types are compatible for

an object ι in a heap χ simply if they have compatible capabilities.

λ ∼ λ′

χ, ι ` DSλ ∼ DSλ′

Figure 11: Compatible types.
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3.5 Aliasing

α

ι

κ =⇒

α

ι

κ +κ

Figure 12: Aliasing.

We now define the aliasing operator +, to give us the minimum compatible capability

when a new alias to an object has been made. An example of this is shown in figure 12,

where an actor α makes a second alias to an object ι. If the original path has capability

κ, the alias must have capability +κ. The results of this operator are summarised in

figure 13.

Note how taking the alias of an object with capability ref, val, box and tag returns

the exact same capability since these all permit multiple aliases to be made of the object

locally, and all of the mentioned capabilities are locally compatible with themselves.

For iso and trn we get tag and box respectively. iso guarantees that it is the

only stable alias to the object in the entire program, so an alias to it cannot allow any

operations to be performed on it (hence tag). Similarly trn guarantees that it is the

only mutable alias in the entire program, so an alias of it can only be immutable and

cannot be sendable since there remains a mutable alias, hence giving box.

Finally we also consider the result of aliasing the two capabilities for temporary

references. Since these were defined to be one alias removed from the two existing

capabilities iso and trn, the result of aliasing iso− and trn− simply gives back the

non-ephemeral versions of each.

We extend this to handle entire declared types by unpacking the capability of the

type and applying the aliasing operator, this can be seen in figure 13.

+λ =


κ iff λ = κ−
tag iff λ = iso

box iff λ = trn

κ iff λ = κ ∧ κ 6∈ {iso, trn}

+(DSλ) = DS (+λ)

Figure 13: Aliasing.

31



3.6 Unaliasing

α

ι

κ =⇒

α

ι

−κ

Figure 14: Unaliasing.

When overwriting a local variable in a destructive read (e.g. x = e, see section 3.2,

AsnLocal), the old value of the variable is returned as a temporary. In this case we

have, as shown in figure 14, both removed a stable alias from the original object and

added a new temporary path to the object. We use the operator − to denote that an

alias has been removed from the capability specified.

For ref, val, box and tag we once again simply give back the exact same capability

since removing a single alias to something that is permitted to make infinitely many of

them does not give us any further guarantees.

For iso and trn we find that none of the six basic capabilities are suitable for repre-

senting such cases. Recall section 3.3.1, namely the introduction of the two ephemeral

capabilities iso− and trn−. iso− refers to an object with no stable aliases in the entire

program and trn refers to an object with only immutable references in a single actor.

We can therefore now have a way of expressing the unaliasing of these two capabilities:

it is simply their ephemeral counterparts. Recall from section 3.3.2 that we consider

ephemeral versions of ref, val, box and tag as if they were their non-ephemeral coun-

terparts (e.g. ref− ≡ ref), which is why we are able to define unaliasing in figure 15

by simply appending an ephemeral modifier to the original capability.

−(κφ) = κ−

−(DSλ) = DS (−λ)

Figure 15: Unaliasing.

We also define the operator to allow us to find the unaliased result of any declared

type (DT) in figure 15. This is done in the same manner as for aliasing in section 3.5,

since for the time being we only consider simple types.
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3.7 Sendable Types

Sendable(DSλ) iff λ ∈ {iso, val, tag}

Figure 16: Sendable types.

As noted in table 3 on page 26, capabilities on the diagonal are sendable to other actors.

This is due to the fact that at these points we have that the operations denied globally are

equivalent to those denied of other aliases locally. For example, an iso alias guarantees

that by transferring ownership from one actor to another, the property that no other

non-opaque aliases may exist either locally or globally is preserved. We therefore define

the types that are sendable in the same way, seen in figure 16, currently unchanged from

PonyS .

3.8 Safe-to-Write

λ / κ
κ

iso trn ref val box tag

λ

iso− � � � � � �

iso � � �

trn− � � � � � �

trn � � � �

ref � � � � � �

val

box

tag

Table 6: Safe-to-write on capabilities.

In PonyG we have five mutable capabilities, however it is not safe to write to a field of

any capability within any mutable object. Consider a case where we have a ref variable

and a iso object with a ref field. If we were permitted to write the variable into the

field, we could then send the iso object to another actor and have two mutable aliases

in two different actors, leading to a data-race. For this reason we therefore define the

relation λ / κ to require that an object with capability λ may only be written to by

aliases with capability κ, with the definition given by table 6.

Note that iso− and trn− allow anything to be written to them, despite the fact

that their non-ephemeral counterparts do not:
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• An iso− object, if being written to, will never be seen again since by overwriting

a field of the object, we lose our only alias to the object itself. This means that it

is perfectly fine to write anything we like into the object.

• Similarly, a trn− object has the same effect but with the exception that we merely

lose our only mutable alias to the object as other immutable aliases may exist.

λ / DSκ iff λ / κ

Figure 17: Safe-to-write on declared types.

We extend our definition of safe-to-write to allow us to express writing fields of any

declared type in figure 17. Note that while we could potentially extend this further to

allow us to write to objects of arbitrary declared type, we omit this from our model of

the language as neither field read nor field write are supported by the Pony language

compiler.

3.8.1 Comparison to PonyS

In the original model, safe to write of ephemeral types was defined to be the same as

their non-ephemeral counterparts (i.e. ∀κ . iso − /κ if and only if iso / κ and likewise

for trn− and trn). We realised that the ephemeral capabilities iso− and trn− could

be made to be much more permissive in terms of what they allow to be written to them,

and so adapted the table to include them as shown.

There is potential for further improvement here, since currently we alias the ob-

ject being assigned before checking safe-to-write. We may be able to allow even more

programs if we are able to check safe-to-write before aliasing (our table then becomes

λ / λ′) as it may be that iso− or trn− are writeable in all cases for receiving objects

with capabilities iso and trn. This has not been explored in great detail, so we omit

further discussion of it.

3.9 Recovery

The Pony language adopts a system similar to that proposed by Gordon et al. [7], which

allows mutable types (ref in our case) to be recovered back to an isolated state (iso).

In Pony this takes the form of an explicit recover block which forbids access to non-

sendable variables. The capability of the resulting alias is then able to be recovered to

a capability making more local guarantees (i.e. rising vertically up the original matrix

of the six capabilities found in table 3 on page 26).

• Any mutable capability iso, trn, ref may be recovered to iso− since we can

guarantee that no other aliases to this object exist after leaving the block. If we

were previously a trn or iso then we could not have been written to a field of an

object outside the block since this would mean we had already violated uniqueness.

Additionally, if we were a trn or ref alias then we could not be written to another
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field since the only mutable capability allowed inside the block is iso, and it is

not safe to write a trn or ref alias into an iso: iso 6/ trn and iso 6/ ref.

• If we were a box then we could not be aliasing something mutable by another

alias, since box is not compatible with iso, and outside trn and ref aliases are

not permitted to be referenced within a recover block so it could not be these

either. We can therefore safely recover this to val.

• For val and tag we cannot make any further guarantees, so we simply recover

them to the same capability.

R(λ) =


iso− iff λ ∈ {isoφ, trnφ, ref}
val iff λ ∈ {val, box}
tag iff λ = tag

R(DSλ) = DS (R(λ))

Figure 18: Recovery.

In figure 18 we describe the rules informally described previously and extend this

definition to declared types by unpacking the capability as we did for aliasing and

unaliasing (see sections 3.5 and 3.6).

3.10 Subtyping

iso− ≤ {iso, trn−} trn− ≤ {trn, ref, val} {trn, ref, val} ≤ box

{iso, box} ≤ tag λ ≤ λ
λ ≤ λ′′ λ′′ ≤ λ′

λ ≤ λ′

Figure 19: Subtyping of capabilities.

The PonyG language supports subsumption: an alias to an object with one capability

may be implicitly treated as another capability in some situations. We use the notation

λ ≤ λ′ to denote that the capability λ is a subtype of (and may therefore be implicitly

treated as) the capability λ′. Additionally, to save space we use the notation λ ≤ {λ′, λ′′}
to denote that λ is both a subtype of λ′ and of λ′′.

The subtyping relationships for capabilities including ephemeral modifiers is pre-

sented in figure 19. The lower-middle and lower-right rules establish subtyping as a

reflexive and transitive relation over capabilities. The remaining rules cement the def-

initions that we have given for the capabilities so far: iso− can be converted to any

capability, trn− can be converted to any non-isolated capability and any capability

except for iso and tag can be treated as box.
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A graphical layout of the rules in figure 19 is presented in figure 20 with reflexivity

and transitivity omitted.

tag

box

trn

trn−

ref val

iso−

iso

Figure 20: Subtyping of capabilities.

3.10.1 Extension to Declared Types

As usual we now extend subtyping in figure 21 to handle subtyping over arbitrary

declared types rather than simply capabilities. The rule S-Cap specifies that one type

is a subtype of itself with a different capability if the capabilities are subtypes. Note that

this also gives us reflexivity of subtyping on entire types due to reflexivity of subtyping

on capabilities. The other rule, S-Trans, specifies transitivity of subtyping in a similar

fashion to that used for capabilities. This is not technically needed at this point since

subtyping on capabilities is already transitive, but we will need this for later extensions

so we present it now for ease.

DT ≤ DT′′ DT′′ ≤ DT′

DT ≤ DT′
S-Trans

λ ≤ λ′

DSλ ≤ DSλ′
S-Cap

Figure 21: Subtyping of declared types.

3.10.2 Comparison to PonyS

The original model had a slight variation on the subtyping relationship shown here due

to the lack of integration between the six basic capabilities and ephemeral modifiers. In

PonyS we had that iso ≤ trn, trn ≤ ref and trn ≤ val (which we have now fixed by

making it so that only iso− ≤ trn−, trn− ≤ ref and trn− ≤ val) which led to a large

number of ”nice-to-have” lemmas not holding. This in turn makes proving properties

about the model more challenging.
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As an example, consider the simple assertion ∀κ, κ′ . κ ≤ κ′ =⇒ κ ∼` +κ′, that

all supertypes are locally compatible after aliasing, which makes sense since everything

is compatible with its alias by definition of aliasing, and subtyping should preserve

local compatibility. This did not hold in the old system however, since iso ≤ trn but

+trn = box and iso 6∼` box. Since we no longer have that iso ≤ trn, this assertion

now holds.

3.11 Viewpoint Adaptation

By now we have defined both aliasing (section 3.5) and unaliasing (section 3.6) to in-

dicate how capabilities behave when additional aliases to an object are created or de-

stroyed, however what we have yet to discuss is how this works when accessing an object

through fields of another object. It is for this reason we now proceed define viewpoint

adaptation, starting with non-extracting viewpoint adaptation (the capability obtained

by field read) in section 3.11.2 and then describing extracting viewpoint adaptation (the

capability of the temporary returned by field write) in section 3.11.3.

Motivation for the existence of viewpoint adaptation itself can be found in sec-

tion 2.2.2, however as mentioned the definition of the table itself was derived from

trial-and-error through examples rather than through a set of testable requirements. In

an effort to formalise these requirements and make them more principled, we present a

set of requirements for viewpoint adaptation operators that allows us to guarantee that

such an operator is well-defined.

3.11.1 Comparison to PonyS

It is here we begin to diverge from the original model more heavily. PonyS defines just

a single operator . for both reading and writing the value of fields. We now split this

definition in two as this allows us more room to optimise the definition and simplify

the requirements of each operator independently: we reuse the original operator . as

non-extracting viewpoint adaptation (the capability obtained on field read) and define

. as extracting viewpoint adaptation (the capability of the old value of a field or variable

returned by overwriting it).

Previous definitions of viewpoint adaptation such as that found in PonyS did not

include any kind of well-formedness definition or rules to indicate whether the definition

was correct. We not only provide this definition but go further in proving exhaustively

that our definition satisfies these requirements using Prolog.

3.11.2 Non-Extracting Viewpoint Adaptation

Non-extracting viewpoint adaptation expresses the capability at which an actor α may

see through an object ι to a field ι′ of the object given that the actor sees ι′ as capability

λ and the object ι′ has a field f of capability κ pointing to ι′. In this case we say that

the actor α sees the field object ι′ as λ . κ, where the operator . denotes non-extracting

viewpoint adaptation. This scenario is shown in figure 22. Note the use of a dashed

line once again to indicate that the path is only a temporary, a proper alias would be
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α

ι

λ

ι′

κ

λ . κ

Figure 22: Non-extracting

viewpoint adaptation.

λ . κ
κ

iso trn ref val box tag

λ

iso− iso− iso− iso− val val tag

iso iso iso iso val tag tag

trn− iso− trn− trn− val val tag

trn iso trn trn val box tag

ref iso trn ref val box tag

val val val val val val tag

box tag box box val box tag

tag ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 7: Non-extracting

viewpoint adaptation table.

created with capability +(λ .κ). The definition of non-extracting viewpoint adaptation

is presented in table 7.

In order to ensure that this definition is correct, we now present a series of

requirements that viewpoint adaptation must observe in order to ensure that we cannot

construct a data-race using the operator if we assume the starting environment is safe

(see section 3.15 for an actual definition of suitable environments):

Definition: Well-formed non-extracting viewpoint-adaptation.

∀λ, λ′, λ′′, λ′′′, κ, κ′, κ′′, if −λ ≤ λ′′ and either κ ∼` κ′ or κ = κ′ then

R1. If λ or κ are immutable, so is λ . κ.

R2. If κ ∼g κ′ then +(λ . κ) ∼g κ′.

R3. If either λ ∼` λ′ or λ = λ′ = κ′′ then +(λ . κ) ∼` λ′ . κ′.

R4. If λ ∼g λ′ then +(λ′′ . κ) ∼g λ′ . κ′.

R5. If Sendable(λ) then +(λ . κ) ∼g λ′′ . κ′.

3.11.2.1 R1: Preservation of Immutability

The first requirement is straight forward. If either of the arguments to the operator are

immutable (i.e. val or box) then obviously the result must also be immutable. This

constrains the value of the operator for cases where either argument is val or box so

that the result must be one of val, box or tag.
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3.11.2.2 R2: Preservation of Field Global Compatibility

The second requirement, shown diagrammatically in figure 23, concerns cases where the

field (here ι′) may already be aliased by other variables or fields in other objects, possibly

in other actors. In this case, we require that when we make an alias to the object ι′, the

capability of this new alias must retain global compatibility (i.e. +(λ . κ) ∼g κ′′ in the

diagram).

α α′

ι

λ

ι′

κ

λ . κ κ′′

Figure 23: Viewpoint adaptation with

globally compatible field capabilities.

α

ι

λλ′

ι′

κκ′

λ . κ

Figure 24: Viewpoint adaptation with locally

compatible object/field capabilities.

3.11.2.3 R3: Preservation of Local Compatibility

Requirement three, shown in figure 24, says that if we could have any other way of

reaching the object ι through a capability λ′ (and possibly another way of reaching the

field from the same object with capability κ′, or just κ) and our original capability λ

was not a temporary, then making an alias to the field must preserve local compatibility

with the path through the alternate object (i.e. +(λ . κ) ∼` λ′ . κ′).

3.11.2.4 R4: Preservation of Object Global Compatibility

Requirement four is similar to requirement two, but instead of requiring global compat-

ibility on the field, we now ask for global compatibility for the path to the parent object

instead. This is shown in figure 25.

α α′

ι

λ

ι′

κκ′

λ . κ

λ′

Figure 25: Viewpoint adaptation with

globally compatible object capabilities.

α α′

ι

λ

ι′

κκ′

+(λ′′ . κ)

Figure 26: Viewpoint adaptation with

sendable objects and subtyping.
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3.11.2.5 R5: Preservation of Sendable Global Compatibility

Finally, requirement five specifies how sendable capabilities behave in the presence of

subtyping, shown in figure 26. This assumes that an alias is first created through a

subtype capability (giving +(λ′′ . κ)) before the original capability is sent to another

actor, at which point we require global compatibility in a similar way to rule two.

3.11.2.6 Checking Requirements with Prolog

In order to ensure that the provided requirements are satisfied for the definition given in

table 7, we use a Prolog program to exhaustively check for potential counterexamples.

Unfortunately due to the circularity in the definition of well-formedness for the operator

it is not feasible to attempt to find all possible solutions to the operator or indeed if

our solution for the operator is optimal, a limitation of this definition. The code for

checking adherence to these requirements can be found in appendix D.2.

3.11.2.7 Expansion to Declared Types

Now that we have defined non-extracting viewpoint adaptation for capabilities, we once

again consider the definition of the operator for full declared types. As with previous

operators, this is not a particularly difficult task. The definition is shown in figure 27

and simply deconstructs the two types to yield their original capabilities, the result is

simply the type of the field with the capability obtained through viewpoint adaptation.

λ . DSκ = DS (λ . κ)

DSλ . DT = λ . DT

Figure 27: Viewpoint adaptation on declared types.

3.11.2.8 Comparison to PonyS

In the original paper a much stricter version of the operator was presented. By splitting

out extraction into a separate operator and combining ephemeral modifiers into capabili-

ties we are now able to allow much more freedom when accessing fields of ephemeral, iso-

lated and transition objects (formerly, iso.trn = iso.ref = tag and trn.ref = box).

3.11.3 Extracting Viewpoint Adaptation

Now that we have defined how an actor sees fields of an object, we can use this to define

extracting viewpoint adaptation. Consider the case shown in figure 28, where an actor

α sees an object ι as capability λ, which as before has a field with capability κ. If we

overwrite the field with a different value, what we get back is a temporary pointing

to the old value prior to being overwritten (similar to how we defined unaliasing in

section 3.6). We use the extracting viewpoint adaptation operator . to denote the

40



capability returned in this case, with Table 8 showing the definition of the operator in

a table format. Note how in this case we may in fact return temporary capabilities,

since we can end up in situations where no stable aliases to the field exist after we have

overwritten them.

α

ι

λ

ι′

κ

λ .κ

Figure 28: Extracting

viewpoint adaptation.

λ . κ
κ

iso trn ref val box tag

λ

iso− iso− iso− iso− val val tag

iso iso− val tag val tag tag

trn− iso− trn− trn− val val tag

trn iso− val box val box tag

ref iso− trn− ref val box tag

val ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

box ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

tag ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 8: Extracting

viewpoint adaptation table.

We now present the requirements governing the definition of extracting viewpoint

adaptation. The requirements presented resemble closely rules two and three in the

corresponding definition for non-extracting viewpoint adaptation but can be simplified

greatly due to the lack of circularity it the definition. This also means it is easy to

compute the optimal definition of . for a given non-extracting viewpoint adaptation

definition criteria simply by trying all possible definitions for each case in turn,

preferring capabilities that make more guarantees (e.g. iso− is preferred to ref).

Definition: Well-formed extracting viewpoint-adaptation.

∀λ′, λ′′, κ′, κ′′ .

R1. If κ ∼g κ′ then +(λ .κ) ∼g κ′.

R2. If either λ ∼` λ′ or λ = λ′ = κ′′, and κ ∼` κ′ then +(λ .κ) ∼` (−λ′) . κ′.

3.11.3.1 R1: Preservation of Global Compatibility

The first requirement, shown in figure 29, describes the case where a globally compatible

field capability has already been shared with another actor α′. We therefore require

global compatibility when creating a new alias from the destructive read.
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α α′

ι

λ

ι′

κ

λ .κ κ′

Figure 29: Extracting Viewpoint adaptation with

globally compatible field capabilities.

3.11.3.2 R2: Preservation of Local Compatibility

The other requirement, shown in figure 30, concerns the situation where we have multiple

possible ways of reaching the field object ι′ through ι. Note how the initial set-up of

figure 30 mimics that of figure 28, simply with additional compatible paths to the two

objects. We must therefore ensure that the newly-created alias is compatible with the

remaining paths to reach the field object (i.e. +(λ .κ) ∼` λ′ . κ′), however this is not

sufficient. Notice that even without a definition of extracting viewpoint adaptation, we

can simulate the effect of a subsequent destructive read of the alternate path to the

parent object ι, giving back a temporary with the more specific capability −λ′. Since

we can use this capability to read the field of the temporary (which is guaranteed to be

more general than our previous attempt since ∀λ∀κ . (−λ).κ ≤ λ.κ), we should require

compatibility on the capability returned by this read instead.

α

ι

λλ′

ι′

κκ′

λ .κ =⇒

α

ι

λλ′

ι′

κκ′

λ .κ(−λ) . κ

Figure 30: Extracting Viewpoint adaptation with

locally compatible object/field capabilities.

It may be interesting to note that the definition of ref . κ corresponds exactly to

how we defined unaliasing (−κ, see section 3.6). This is what we would hope to see

however, since by definition (well-formed programs, appendix C) actors see themselves

as ref when executing behaviours.
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3.11.3.3 Checking Requirements with Prolog

Once again we can check that our provided requirements are satisfied by using Prolog

to exhaustively check for potential counterexamples. We can in fact do a step better

than we could in the non-extracting viewpoint adaptation operator: since this definition

is intentionally non-circular, we can ask Prolog to find the optimal solution for the

extracting viewpoint adaptation operator given a valid definition of the non-extracting

operator (and indeed this is how we obtain the definition given in table 8). The code

for finding the single optimal solution is not presented in this report however the rules

themselves are presented in appendix D.3.

3.11.3.4 Expansion to Declared Types

Finally we extend this operator to full declared types as we have done for every operator

so far. As we have come to expect, this is an unsurprising definition, seen in figure 31, as

we simply deconstruct the two types to find their capability before applying extracting

viewpoint adaptation and augmenting the result with the type identifier of the field.

λ . DSκ = DS (λ .κ)

DSλ . DT = λ . DT

Figure 31: Extracting viewpoint adaptation.

3.11.3.5 Comparison to PonyS

The PonyS paper did not present an alternate triangle for the result of writing to a

field, instead using the equivalent of −(λ . κ). Our new definition is novel and allows us

additional freedom when overwriting fields, as we now have that iso . trn = val rather

than tag. Our addition of ephemeral capabilities also permits us to give back much

more permissive capabilities when overwriting fields of ephemeral objects.

One downside to our new definition of viewpoint adaptation is that we have actually

become more restrictive in our definition of trn . trn which is now val while in PonyS it

was permitted to be trn−. It may be possible to recover this at the expense of other

elements in the table (most importantly, trn− .box must give box rather than the val

allowed by our definition in order to be safe), but this possibility is not investigated

further.
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x ∈ Γ

Γ ` x : Γ(x)
T-Local

Γ ` e : DT F(DT, f) = DT′

Γ ` e.f : DT . DT
T-Fld

DS ∈ P

Γ ` null : DS iso−
T-Null

Γ ` e : DT Γ ` e′ : DT′

Γ ` e; e′ : DT′
T-Seq

Γ(x) = DT Γ `A e : DT

Γ ` x = e : −DT
T-AsnLocal

Γ ` e : DSλ Γ `A e′ : DT

F(DS, f) = DT′ DT ≤ DT′ ` λ / DT
Γ ` e.f = e′ : λ . DT′

T-AsnFld

Md(DT, m) = (DT, x : DT, DT′)

Γ `A e : DT Γ `A ei : DTi

Γ ` e.m(e) : DT′
T-Sync

Md(DS, b) = (DS ref, x : DT, DS tag)

Γ `A e : DS tag Γ `A ei : DTi

Γ ` e.b(e) : DS tag
T-Async

Md(C, k) = (C ref, x : DT, C ref)

Γ `A ei : DTi

Γ ` C.k(e) : C ref
T-Ctor

Md(A, k) = (A ref, x : DT, A tag)

Γ `A ei : DTi

Γ ` A.k(e) : A tag
T-Ator

Γ `S e : DT

Γ `A e : +DT
T-Alias

Γ\{x | ¬Sendable(Γ(x))} ` e : DT

Γ ` recover e :R(DT)
T-Rec

Γ ` e : DT′ DT′ ≤ DT

Γ `S e : DT
T-Subsume

Figure 32: Expression typing.

3.12 Type Rules

Now that we have defined operators on capabilities and types, we can finally express the

type of expressions. In some situations (the right-hand side when assigning, arguments

when calling methods etc...) we need to ensure that an alias is taken rather than using

the original capability (see the definition of aliasing section 3.5. We specify that we

require aliasing by using `A to invoke the T-Alias rule rather than the standard typing

judgement. This rule in turn invokes T-Subsume to allow for subtyping to occur.

The rules T-Local, T-Null and T-Seq should come as no surprise. Local variables

simply have their type given to them by the environment, sequences of expressions simply

discard the first type and null is a unique alias to any valid type.

• Field read is handled by T-Fld and is done by first typing the object expression

and then looking up the field type and using viewpoint adaptation to obtain the

type of the returned temporary (see appendix A for definition of F , section 3.11

for viewpoint adaptation).

• Local variable assignment is handled by the T-AsnLocal rule in a similar way to

how we defined unaliasing (section 3.6). We lookup the type of the local variable

in the environment and ensure that the type of the expression, when aliased, may

produce an expression of the same type. The type of the assignment is simply the
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type of the variable with one alias removed since we return the previous value of

the variable.

• The T-AsnFld rule for assigning to fields utilises the extracting viewpoint adap-

tation operation . defined in section 3.11.3. We first type the left side of the

expression and look up the field type. We then see if the right-hand side of the

assignment can be typed with any safe-to-write (see section 3.8) subtype of the

field type (this allows for example, writing into an ref field of an iso object even

though iso 6/ ref). Finally we can use extracting viewpoint adaptation to yield

the type of the original field with alias-removed.

• Method and behaviour calls are handled with the T-Sync and T-Async rules

respectively. Both rules work by first typing (with aliasing) both the source ex-

pression e and all argument types. We then lookup the method or behaviour being

called (see appendix A for definition of Md) and ensure that the types are the

same. The entire expression simply has the type of the function return type.

• The constructors T-Ctor and T-Ator work in much the same way as T-Sync

and T-Async, but they are only concerned with ensuring the type of the argu-

ments are correct. The return type of both is either a ref (in the case of an object)

or tag (in the case of an actor) alias to the newly created object.

• Finally, we handle recovery through the T-Rec rule. We require that the in-

ner expression can be typed with only sendable variables and apply the recovery

operator R to the resulting type. See section 3.9 for more details.

Our definition presented here has the additional bonus of being entirely syntax driven

(`A and `S are not syntax-driven but contain just a single rule) and hence satisfies

the subformula property. This means that given a typed expression, we can derive

constraints for the types of any sub-part of the expression by working through the rules

provided. We cannot derive the exact type of part of an expression in all cases however

due to the fact that we allow subtyping to occur through the T-Subsume rule.

3.12.1 Comparison to PonyS

In PonyS , the T-Subsume rule existed only to convert between ephemeral and non-

ephemeral capabilities, with subtyping being permitted only within the T-Alias and

T-AsnFld rules. We have moved the subtyping out of T-Alias to replace the T-

Subsume rule with our own. The presence of full subtyping as its own rule also allows

us to use it in the definition of well-formed programs (see appendix C).

The T-AsnFld originally had a more complex definition as a result of the definition

of capabilities in PonyS . We have also introduced . , which allows us much more

flexibility compared to the original definition (which would have been equivalent to

−(λ . DT′)).

Finally, object constructors in PonyS returned the equivalent of ref−, i.e. an

ephemeral reference, however in the presented system this is no different from ref itself,
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so we simply write this instead. If one wishes to use a newly created object as a non-

subtype capability they may do so by enclosing the constructor in a recover expression

(this is no different from in PonyS and indeed the Pony language compiler itself, which

is able to implicitly recover constructed objects in many cases).
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3.13 Active and Passive Temporaries

In order to prove properties of our model such as the preservation of well-formed visibil-

ity, we must require that there is at any point in time at most one temporary typed with

the non-aliasing typing judgement (` rather than `A) such as the left hand side of field

lookup and assignment (see section 3.12). This property holds as a result of the order

of execution enforced by expression holes (see section 3.1), which requires that any part

of an expression used in a non-aliased way must be the final part to be executed.

Temporaries whose capability has yet to be aliased are referred to as active tempo-

raries. Temporaries such as the right hand side of assignments will be evaluated as an

active temporary initially, however in order to ensure that only one active temporary

exists at any one time we must at some point take the alias of its capability. After

aliasing, we refer to the temporary as passive.

We partition the space of temporaries into active and passive temporaries as ta and

tp respectively:

t = ta | tp

The evolution of evaluation for a field assignment therefore proceeds as follows (where

 ∗ denotes any number of execution steps):

χ0, σ0, e.f = e′  ∗ χ1, σ1, e.f = ta  χ2, σ2, e.f = tp  
∗ χ3, σ3, ta.f = tp  χ4, σ4, ta

We define the active temporary reduction step as an augmentation to the existing

execution rules in figure 33 and assume that all existing execution rules are modified

such that newly created temporaries are always active and all uses of temporaries require

passive temporaries with the exception of Fld, AsnFld, Return, Async and Rec

where the leftmost temporary in the expression must be an active temporary. A modified

version of the operational semantics is presented in figure 35 on page 48 (for original

execution rules see section 3.2). To ensure that expressions can continue to be typed

after partial execution we also present new type rules for the two temporaries in figure 34

(The existing T-Local rule does not apply to temporaries). Passive temporaries may

only be typed in an aliased context (denoted by `A, see T-Passive) as that is the only

place where they should appear in an expression.

tp /∈ ϕ
χ, σ · ϕ[ta 7→ v], ta  χ, σ · ϕ[tp 7→ v], tp

Reduce

Figure 33: Active temporary reduction.

ta ∈ Γ

Γ ` ta : Γ(ta)
T-Active

tp ∈ Γ

Γ `A tp : Γ(tp)
T-Passive

Figure 34: Type rules for active/passive temporaries.
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χ, σ · ϕ, e χ′, σ · ϕ′, e′

χ, σ · ϕ, E[e] χ′, σ · ϕ′, E[e′]
ExprHole

χ, χ(α) ↓4, χ(α) ↓5 χ′, σ, e

χ→ χ′[α 7→ (σ, e)]
Global

ta /∈ ϕ ϕ′ = ϕ[ta 7→ null ]

χ, σ · ϕ, null χ, σ · ϕ′, ta
Null

χ, σ, ta; e χ, σ, e
Seq

ta /∈ ϕ ϕ′ = ϕ[ta 7→ ϕ(x)]

χ, σ · ϕ, x χ, σ · ϕ′, ta
Local

ta /∈ ϕ
ϕ′ = ϕ[x 7→ ϕ(tp), ta 7→ ϕ(x)]

χ, σ · ϕ, x = tp  χ, σ · ϕ′, ta
AsnLocal

t′a /∈ ϕ ϕ′ = ϕ[t′a 7→ χ(ϕ(ta), f)]

χ, σ · ϕ, ta.f χ, σ · ϕ′, t′a
Fld

t′a /∈ ϕ ϕ′ = ϕ[t′a 7→ χ(ϕ(ta), f)]

χ′ = χ[ϕ(ta), f 7→ ϕ(tp)]

χ, σ · ϕ, ta.f = tp  χ′, σ · ϕ′, t′a
AsnFld

ta 6∈ ϕ
Mr(χ(ϕ(t)) ↓1, m) = (x, e)

ϕ′′ = (m, [this 7→ ϕ(tp), x 7→ ϕ(tp))], ·)
ϕ′ = (ϕ ↓1, ϕ ↓2, E[·])

χ, σ · ϕ, E[tp.m(tp)] χ, σ · ϕ′ · ϕ′′, e
Sync

ϕ ↓3= E[·] t′a /∈ ϕ
ϕ′′ = (ϕ ↓1, ϕ ↓2[t′a 7→ ϕ′(ta)], ·)
χ, σ · ϕ · ϕ′, ta  χ, σ · ϕ′′, E[t′a]

Return

α = ϕ(ta) χ(α) ↓3= µ

χ′ = χ[α 7→ µ · (b, ϕ(tp))]

χ, σ · ϕ, ta.b(tp) χ′, σ · ϕ, ta
Async

A = χ(α) ↓1 (n, v) · µ = χ(α) ↓3
Mr(A, n) = (x, e)

ϕ = (n, [this 7→ α, x 7→ v], ·)
χ, α, ε χ[α 7→ µ], α · ϕ, e

Behave

ω 6∈ dom(χ) f = Fs(C)

Mr(C, k) = (x, e)

χ′ = χ[ω 7→ (C, f 7→ null)]

ϕ′′ = (k, [this 7→ ω, x 7→ ϕ(tp)], ·)
ta 6∈ ϕ ϕ′ = (ϕ ↓1, ϕ ↓2, E[·])

χ, σ · ϕ, E[C.k(tp)] χ′, σ · ϕ′ · ϕ′′, e
Ctor

α 6∈ dom(χ) f = Fs(A)

χ′ = χ[α 7→ (A, f 7→ null , (k, ϕ(tp)), α, ε)]

ta /∈ ϕ ϕ′ = ϕ[ta 7→ α]

χ, σ · ϕ, A.k(tp) χ′, σ · ϕ′, ta
Ator

χ, σ, recover ta  χ, σ, ta
Rec

χ, α · ϕ, ta  χ, α, ε
ReturnBe

ϕ(ta) = null

χ, σ · ϕ, ta.f χ, σ · ϕ, ta
χ, σ · ϕ, ta.f = tp  χ, σ · ϕ, ta
χ, σ · ϕ, ta.n(t) χ, σ · ϕ, ta

Except

Figure 35: Execution with active and passive temporaries.
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3.13.1 Well-Formed Temporaries

Now that we have a definition of active and passive temporaries we can express that the

maximum number of active temporaries in an actor at any point in time across all stack

frames is at most one. This is defined as well-formed temporaries in figure 36.

WFT(∆, χ) iff ∀α ∈ χ . |{ta | ∀i . ta ∈ ∆(α, i)}| ≤ 1

Figure 36: Well-formed temporaries.

3.14 Visibility

pe ∈ ExtPath = (i, x)φ · fI | (i, tp)φ · fI | (i, ta) · fI · fI
pg ∈ GeneralPath = pg | (i, ta)
I = . | .

Figure 37: Extended and General Paths.

Previously we described the two viewpoint adaptation operators in section 3.11 as a

method for determining the capability resulting from a field read or write. A key ob-

servation here is that we can also use the operators to check the capability that would

be obtained after a series of field reads and writes (e.g. x.f.f.f or (x.f.f = y).f) by

repeatedly applying the viewpoint adaptation operators for each step of the path.

In order to be able to express this while reasoning about paths, we define a notion of

extended paths and general paths in figure 37. These represent paths beginning with a

local variable or temporary and followed by any number of field accesses. We augment

this with a ephemeral modifier on the local variable and a viewpoint adaptation operator

to each field access, corresponding to whether the value at that point in the path is being

overwritten or simply read from. Extended paths and general paths differ only in the

fact that extended paths may not include the exact path of an active temporary (i, ta),

since the requirements on this is weaker than of any other path as it must have its

capability aliased before being assigned to anything or passed as the argument to a

method.

We define visibility in figure 38 with the form ∆, χ, ι ` ι : λ, pg to mean that under

some environment ∆ and heap χ, the path pg from object ι to object ι′ has capability

λ.

1. V-This says simply that all actors see themselves as ref.

2. The V-Read rule handles reading of a local variable: an actor sees a local variable

or temporary z as the capability given by the type of z in the environment if being

read.
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3. Similarly the V-Write rule handles overwriting of a local variable: an actor

sees a temporary or local variable z as the unalias of the capability given by the

environment if being overwritten. We also require that z 6= ta, that is to say that

we cannot overwrite active temporaries, however this is only of interest later when

proving preservation of well-formedness in section 4.3.

4. Finally, V-Field handles field accesses. An object ι sees another object ι′ with

some capability λ I κ if there is some path to an intermediate object ι′′ with

capability λ which has ι′ as a field with capability κ. The annotation on the field

determines which viewpoint adaptation operator is used in this case.

∆, χ, α ` α : ref, (0, this)
V-This

χ(α, (i · z)) = ι

∆(α, i, z) = DSλ

∆, χ, α ` ι : λ, (i, z)
V-Read

z 6= ta

χ(α, (i · z)) = ι

∆(α, i, z) = DSκ

∆, χ, α ` ι : −κ, (i, z)−
V-Write

∆, χ, ι ` ι′′ : λ, pg
χ(ι′′, f) = ι′

F(χ(ι′′) ↓1, f) = DSκ

∆, χ, ι ` ι′ : λ Iκ, pg · fI
V-Field

Figure 38: Visibility.

3.14.1 Comparison to PonyS

The original model contained an equivalent of these rules with the exception of V-

Write. The major change here is the introduction of extended and general paths (pe

and pg respectively) which allow us to encode a sequence of reads and writes along a

path. As we will see in a moment, this lends itself nicely to a straight-forward definition

of what it means for a heap to have well-formed visibility.

3.15 Well-Formed Visibility

3.15.1 Motivation

Recall back to our definition of compatibility in section 3.4, we wanted a way to de-

termine which capabilities could safely co-exist with each other. Now that we have a

method of determining the capability of any arbitrary path through a heap, we can

develop a notion of well-formed visibility in order to check that a heap is safe with re-

spect to ensuring data-races cannot occur. We begin with a naive definition and identify

potential issues before giving the correct definition on page 53.

3.15.2 Initial Definition

Let us begin by considering the following two simple heaps, shown in figures 39 and 40.
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α

ι1

x1, iso x2, iso

Figure 39: Example Heap 1 (Invalid).

α

ι1

x, iso

ι2

f1, ref f2, ref

Figure 40: Example Heap 2 (Valid).

Let us begin by attempting a definition that says that the capabilities of all paths

to an object must be locally compatible (i.e. if ∆, χ, α ` ι, λ, pe and ∆, χ, α ` ι, λ′, pe′

then λ ∼` λ′). This is good for the first example, we can see ι1 through (i, x1) as an

iso and likewise through (i, x2), iso 6∼` iso and so we are done, this heap is invalid as

expected.

The second example goes less smoothly however: we can see ι2 through (i, x) · f1.

and (i, x) · f2., both with capability iso . ref = iso. Since iso 6∼` iso once again, this

means that our initial definition using local compatibility is unsuitable for proving this

second heap correct.

Our next attempt derives inspiration from the earlier well-formedness definitions

of the two viewpoint adaptation operators (see section 3.11. We noted that the main

concern to safety in the case of these operators was that the field reads could lead to

an additional alias to the object, causing many of our definitions to contain a term of

the form +(λ I κ). We can adapt this to a revised definition of well-formed visibility,

requiring that the capabilities of paths to an object must be locally compatible after

aliasing of one of them (i.e. if ∆, χ, α ` ι, λ, pe and ∆, χ, α ` ι, λ′, pe′ then λ ∼` λ′).
Checking our two examples, we now see that both cases work as expected:

• Our counterexample to the first heap no longer holds, since +iso ∼` iso, but

we can get a new counterexample by using the unaliased version of the two local

variables. We can see ι1 through both (i, x1)− and through (i, x2)− as an iso−,

and since +(iso−) 6∼` iso− we have one again proven this heap invalid.

• Similarly our counterexample from the second heap no longer holds for the same

reason as the first. Unlike the first however we cannot simply use extracting

viewpoint adaptation in this case. The two paths (i, x) · f1. and (i, x) · f2. both

have capability iso . ref, which is tag. In this case we would not be able to

construct a counterexample except by using paths that interfere with each other

(such as overwriting the value of x in at least one of the paths.
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3.15.3 Interfering Paths

When checking that two extended paths to the same object are allowed to co-exist, we

need to ensure that we are not checking an invalid pair of paths (e.g. checking a path

against itself). If two paths from the same actor α are judged to interfere with each

other, we say that χ, α ` Interferes(pe, pe′).

There are two main cases of interest here:

• The simpler case is simply if two paths share their final step then they are said

to overlap. This is shown in the first and second cases of path interference, and

shown diagrammatically in figure 41 where pe · f. and pe′ · f. interfere.

• If two paths share some field access in some object, and at least one of them

performs extracting viewpoint adaptation or unaliasing on this field then it is

invalid for the other path to also use the same path (as the result now depends on

the order in which the paths are enacted). This is shown in the third and fourth

cases of path interference and diagrammatically in figure 42 where pe ·f. ·f′I and

pe′ · fI · f′I interfere.

α

ι′

pe pe′

ι

f

Figure 41: Path interference on

the final step.

α

ι′

pe pe′

ι′′

f

ι

f f′

Figure 42: Path interference due

to overlapping.
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χ, α ` OverlapsWith(pe, pe′) iff ∃pe′′, pe′′′, f, fI, f′I such that either

1. pe = (i, z)φ · fI and pe′ = (i, z)− · f′I, or

2. pe = pe′′ · fI · fI and pe′ = pe′′′ · f. · f′I and χ(α, pe′′) = χ(α, pe′′′).

χ, α ` Interferes(pe, pe′) iff

1. ∃i, z, φ, φ′ such that pe = (i, z)φ and pe′ = (i, z)φ
′
, or

2. ∃pe′′, pe′′′, f such that pe = pe′′ · fI and pe′ = pe′′′ · fI and χ(α, pe′′) = χ(α, pe′′′),

or

3. χ, α ` OverlapsWith(pe, pe′), or

4. χ, α ` OverlapsWith(pe′, pe).

Figure 43: Interfering paths.

3.15.4 Well-Formed Visibility

WFV (∆, χ) iff

∀α, α′, ι ∈ χ.∀pe, pe′, pg, pg′.∀i, ta.∀λ, λ′,

1. If α 6= α′ and ∆, χ, α ` ι, λ, pg and ∆, χ, α′ ` ι, λ′, pg′ then λ ∼g λ′.

2. If ∆, χ, α ` ι, λ, pe and ∆, χ, α ` ι, λ′, pe′ then either

(a) +λ ∼` λ′, or

(b) χ, α ` Interferes(pe, pe′).

3. If ∆, χ, α ` ι, λ, pe and ∆, χ, α ` ι, λ′, (i, ta) then +(+λ′) ∼` λ and +λ ∼` +λ′.

Figure 44: Well-formed visibility.

From our initial attempt at a definition of well-formed visibility we now present the full

and correct definition. We require that the following requirements hold, corresponding

to cases of figure 44:

• The first case says that any two general paths from different actors to the same

object ι must have paths with globally compatible capabilities.

• Case two requires that for any pair of extended paths, it must be that they are

typed with capabilities such that the alias of one is locally compatible with the

other (and vice-versa), or the paths interfere with each other.

• Finally we must give a much weaker requirement for the combination of active

temporaries and extended paths, since active temporaries must first be aliased
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before being used in most situations such as being sent to other actors (it will

either be aliased and then used or will be used for an operation such as field read

or write, being discarded in the process). We therefore simply take the second

case and add an additional alias operation to the capability of the temporary. In

this case we can also discard the possibility of interference, since this cannot occur

by the structure of pe (recall our definition of extended paths: pe may not be of

the form (i, ta)).

Note that we do not require anything locally of pairs of active temporaries since we

assume the number of active temporaries in a single actor is limited to at most one (see

section 3.13.1).

3.15.5 Comparison to PonyS

The original definition of well-formed visibility presented in PonyS was completely dif-

ferent from the form presented here, utilising a number of special cases to handle the

constraints posed by iso and trn capabilities, however this caused a significant issue

when we attempted to add extensions to the initial model. In order to allow our defini-

tion to be readily extended to other extensions like unions, tuples and intersection types

we had to ensure that the number of special cases was reduced as much as possible by

trying out a variety of solutions for the definition.

In one alternate solution, we introduced the concept of bubbles which restricted the

aliases that could pass through the barrier to fields of the bubble object. iso objects

were one such example: they introduce both a read and write bubble (so readable or

writeable fields of the iso object may not be aliased outside the bubble. This solution

seemed promising however once again had issues with extensibility and also did not fully

deal with the problem of temporary objects.

Extended paths and compatibility between their capabilities provides a nice solution

to all of these problems, since we need no special cases and handles temporaries reason-

ably naturally. As we will see later when we come to add extensions to our PonyG model

(see section 5.5), this definition is almost trivial to extend to handle additional types

without additional complexity.

Finally, the definition of interference between paths in the model presented by

PonyS was significantly simpler than that presented here (equivalent to just the first

two cases of Interferes) due to the fact that paths now contain a notion of what opera-

tion is performed upon them.

3.15.6 Examples

We now present a pair of slightly larger examples to demonstrate application of our

definition of well-formedness, focusing on the interesting cases of local compatibility

once again.
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α

ι1

x, iso

ι2

f2, trn

ι3

f1, box

f1, ref

Figure 45: Example Heap 1 (Invalid).

α

ι1

x, iso

ι2

f1, ref

ι3

f2, ref

ι4

f1, ref f1, ref

Figure 46: Example Heap 2 (Valid).

We begin by observing the heap described by figure 45. We have a number of pairs

of extended paths to consider in this case however since we are trying to prove this

heap invalid we need only find a single case that does not fulfil the requirements of

well-formedness. Consider the case where pe = (i, x) · f1. and pe′ = (i, x) · f2. · f1.,
giving us λ = iso . ref = iso and iso . trn . box = val . box = val. We require that

+λ ∼` λ′ and +λ′ ∼` λ however +val 6∼ `iso since +val = val and val 6∼ `iso. As

we have been able to find a counterexample, we can say that this heap is not valid.

The next heap we consider is that shown in figure 46. For conciseness we explore

simply proving well-formedness for paths leading to ι4. We now consider all possible

combinations of pairs of paths:

• Any paths of the form (i, x)− · fI (performing unaliasing on x) will interfere with

any other path to ι4, so we can discount these immediately.

• Any pairs of paths who share the last step to ι4 (i.e. if both go through ι2 or both

go through ι3 in this case) then they must interfere, so we ignore these as well.

• If extracting viewpoint adaptation is used on any of the fields in this heap through

any of the remaining paths then we will have well-formedness trivially satisfied

(since iso . ref = tag, and tag is compatible with anything).

• We have one final case to check: pe = (i, x) · f1. · f1. and pe′ = (i, x) · f2. · f1.,
giving λ = λ′ = iso . ref . ref = iso. We require that +λ ∼` λ′ and +λ′ ∼` λ,

which obviously holds since +iso = tag.

Since we have been able to say that all possible pairs of paths satisfy well-formedness,

we can safely say that this heap is valid.
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3.16 Well-Formed Heaps

Now that we have defined well-formedness in terms of visibility, we can now reasonably

easily express what it means for an entire heap to be well-formed. This is given by the

judgement ∆ ` χ�, which says that under the given type rules, the specified heap is

well-formed.

• ∆ ` χ� iff ∀ι ∈ dom(χ) . χ ` ι� and ∀α ∈ χ .∆, χ ` α� and WFV (∆, χ) and

WFT (χ)

• χ ` ι� iff ∀f∈ Fs(χ(ι) ↓1) . χ, χ(ι, f) ` F(χ(ι) ↓1, f)�

• ∆, χ ` α� iff χ(α) = ( , , µ̄, α · ϕ, e) and ∀i .∆, χ, α, ϕ ` i� and ∀j .∆, χ, α, µ ` j�

• ∆, χ, α, ϕ ` i� iff given ϕi = (n, , E[·]) and Md(ϕi, χ) = (DT, x : DT′, DT′′) and

∆(α, i) = Γ then

1. Γ(this) = DT and Γ(xj) = DT′j

2. ∀z ∈ ϕi . χ, ϕi(z) ` Γ(z)�

3. If i = 1 then ϕi(this) = α

4. If i< |ϕ|, given ta /∈ Γ and Γ′′ = Γ[ta 7→ Md(ϕi+1, χ) ↓3]
then Γ′′ `S E[t] : DT′′

5. If i = |ϕ| then Γ `S e : DT′′ and E[·] = ·

• ∆, χ, α, µ ` i� iff given µi = (b, v) and vj = ι and Md(χ(α) ↓1, b) = ( , x : DT, )

and ∆(α,−i) = Γ then

1. χ, ι ` DTj�

2. Γ(xj) = DTj

• χ, ι ` DT� iff χ(ι) ↓1= RS and ∃λ such that RSλ ≤ DT

Figure 47: Well-formed heaps.

The rules for determining well-formed heaps are presented in figure 47 and are broken

down into a number of parts:

• A heap is well-formed in the given environment (∆ ` χ�) if and only if all objects

and actors in the heap are well-formed with respect to the heap (χ ` ι�), all actors

are well-formed with respect to the heap and environment and finally well-formed

visibility and well-formed temporaries hold for the heap and environment provided

(WFV (∆, χ) and WFT (∆, χ)).

• An object or actor is well-formed with respect to a given heap (χ ` ι�) if and only

if for all fields of the object, the runtime type of the object is a subtype of what

it was declared to be (χ, ι ` DT�).

• An actor is well-formed with respect to a given heap and environment (∆, χ ` α�)

56



if and only if each stack frame is well-formed (∆, χ, α, ϕ ` i�) and each message

in the message queue of the actor is well-formed (∆, χ, α, µ ` j�).

• The ith stack frame of an actor is well-formed (∆, χ, α, ϕ ` i�) if and only if the

type of this and any arguments to the method have the correct type (χ, ι ` DT�),
and the type of the expression for that stack frame (after substituting in the result

of the in-flight method call, if applicable) matches the return type for the method.

We also require that the topmost stack frame has an empty continuation (since it

has not currently awaiting the result of a method call).

• The ith message to an actor is well-formed (∆, χ, α, µ ` i�) if and only if all values

for the arguments to the behaviour are subtypes of that expected (χ, ι ` DT�).

3.16.1 Comparison to PonyS

Unlike well-formed visibility, this definition has not changed significantly from that

presented in PonyS . Subtyping has been added and we now allow subsumption when

checking that return types are as expected, in keeping with the definition of well-formed

programs (see appendix C).

Previous versions of well-formed heaps also made a requirement at each stack frame

about the temporaries that could be in existence at any one time. We move this re-

quirement to the top-level definition of well-formed heaps to reduce complexity of the

other definitions.

We add the judgement χ, ι ` DT� to avoid repetition and make modifying the defi-

nition for tuples and intersection types easier.

Finally, in PonyS , the continuation of each stack frame was stored in the stack

frame above it. This made for a simpler operational semantics but was unintuitive and

slightly complicated the definition of well-formed heaps, so as noted when we discussed

the operational semantics (see section 3.2) we now store the continuation for a stack

frame in the frame itself.
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4 Theorems

4.1 Notation

Since our concept of extended paths allows a large number of combinations (whether

to take the unalias of the base and whether to use viewpoint adaptation or standard

non-extracting viewpoint adaptation), we use the following forms to reduce the burden

of writing down each possible combination:

• We use the form φλ to indicate that the formula should be duplicated and replaced

such that one formula now contains simply λ and the other −λ.

• We use the form λ I κ to indicate that the formula should be duplicated and

replaced such that one formula contains λ . κ and the other λ .κ.

We may combine these independently of each other, doubling the number of ex-

panded formulas for each unique occurrence. For example, the formula φλ I κ ∼` φλ I
κ would be equivalent to writing the following four individual assertions:

1. λ . κ ∼` λ . κ

2. −λ . κ ∼` −λ . κ

3. λ .κ ∼` λ .κ

4. −λ .κ ∼` −λ .κ

One further piece of syntax we use is that for substitution of subpaths (such as in

order to construct a path valid at a previous execution step). We use the following

syntax pe[Y \X] to indicate that if the path contains a subpath matching X then we

replace it with Y . For example:

(i, ta) · f.[(i, x)\(i, ta)] = (i, x) · f.

(i, tp)
− · f.[(i, x)φ\(i, tp)φ · f.] = (i, x)−

4.2 Lemmas

Before proving anything, we must first establish a number of lemmas concerning ca-

pabilities. These are all either straight-forward enough to be checked by exhaustion

(done using Prolog by attempting to find a counterexample, see appendix D) or can be

constructed from other lemmas already proven.

Lemma 1. ∀λ, λ′ . if λ ∼ λ′ and λ ≤ λ′′ then λ′′ ∼ λ′

Subtyping preserves compatibility, proved using Prolog.

(see appendix D, lemma subtyping preserves compatibility)

Lemma 2. ∀λ . λ ≤ +λ

Aliases of capabilities are subtypes, proved using Prolog.

(see appendix D, lemma alias is subtype)
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Lemma 3. ∀λ . λ ≤ φ(+λ)

Ephemerals of aliases of capabilities are subtypes, proved using Prolog.

(see appendix D, lemma alias with ephemeral is subtype)

Lemma 4. ∀λ, λ′ . if λ ∼ λ′ then +λ ∼ λ′

Aliasing preserves compatibility, this follows trivially from lemmas 1

and 2.

Lemma 5. ∀λ, λ′, λ′′ . if +λ ∼ λ′′ and λ ≤ λ′ then +λ′ ∼ λ′′

Subtyping preserves aliased compatibility, Proved using Prolog.

(see appendix D,

lemma subtyping preserves aliased compatibility)

Lemma 6. ∀λ, λ′, κ . if λ ≤ λ′ then λ I κ ≤ λ′ I κ
Viewpoint adaptation preserves subtyping, proved using Prolog.

(see appendix D,

lemma viewpoint adaptation preserves subtyping)

Lemma 7. ∀λ, λ′, λ′′, κ . if λ ≤ λ′ and λ I κ ∼ λ′′ then λ′ I κ ∼ λ′′

Viewpoint adaptation preserves compatibility after subtyping, this follows

directly from lemmas 1 and 6.

Lemma 8. ∀λ, λ′, κ, κ′ . if λ ∼g λ′ then λ I κ ∼g λ′ I κ′

Global compatibility is preserved by viewpoint adaptation with arbitrary

capabilities, proved using Prolog.

(see appendix D, lemma compat global preserved)

Lemma 9. ∀λ, λ′, λ′′, κ . if λ ≤ λ′ and λI κ ∼ λ′′ then λ′I κ ∼ λ′′ and λI κ ≤ λ′I κ
Unbounded viewpoint adaptation preserves compatibility and subtyping,

this follows from lemmas 6 and 7.

Lemma 10. ∀λ, λ′, λ′′, κ . if λ ≤ λ′ and +(λI κ) ∼ λ′′ then +(λ′I κ) ∼ λ′′ and

λI κ ≤ λ′I κ
Unbounded viewpoint adaptation preserves aliased compatibility and

subtyping, this follows from lemmas 5 and 6.

Lemma 11. ∀λ, λ′, λ′′, κ . if λI κ ∼ λ′ and λ ≤ λ′′ then φ(+λ′′)I κ ∼ λ′

Subtyping, aliasing, ephemeral modifiers and unbounded viewpoint

adaptation preserves compatibility, this follows directly from lemmas 3

and 9 since λ ≤ φ(+λ′′).

Lemma 12. ∀λ, λ′, κ, κ′ . if +(λI κ) ∼` λI κ′ and λ ≤ λ′ then

+(φ(+λ′)I κ) ∼` φ(+λ′)I κ′

This follows from lemmas 3 and 10.

Lemma 13. ∀λ, λ′, λ′′, κ . if +(λI κ) ∼` λ′ and λ ≤ λ′′ then +(φ(+λ′′)I κ) ∼` λ′

Subtyping, aliasing, ephemeral modifiers and unbounded viewpoint

adaptation preserves aliased compatibility, this follows directly from

lemmas 3 and 10 since λ ≤ φ(+λ′′).
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Lemma 14. ∀λ, λ′, λ′′, κ . if +λ ∼` λ′I κ and λ′ ≤ λ′′ then +λ ∼` φ(+λ′′)I κ
Subtyping, aliasing, ephemeral modifiers and unbounded viewpoint

adaptation preserves compatibility with an alias, this is simply a weaker

version of lemma 11.

Lemma 15. ∀λ, λ′, κ . if +(+λ) ∼` λI κ′ and λ ≤ λ′ then +(φ(+λ′)) ∼` φ(+λ′)I κ
This follows from lemmas 1, 3, 5 and 7.

Lemma 16. ∀λ, λ′, κ . if +(λI κ′) ∼` +λ and λ ≤ λ′ then +(φ(+λ′)I κ) ∼` φ(+λ′)

This follows from lemmas 1, 3, 5 and 7.

Lemma 17. ∀λ, λ′,I, κ . if λI κ = λ′ then ∃I′ such that λI′ κ = −λ′

If unbounded viewpoint adaptation yields one capability, there must also

be another sequence of viewpoint adaptation operators along the same

series of capabilities that yields the unalias. Proved using Prolog.

(see appendix D, lemma treat paths as ephemeral).

Lemma 18. ∀λ, λ′, λ′′, λ′′′ . if +(+λ) ∼` φλ′′′ and +(φλ′′′) ∼` +λ and λ ≤ λ′′ then

+(φ(+λ′′)) ∼` φλ′′′ and +(φλ′′′) ∼` φ(+λ′′)

Proved using Prolog (see appendix D,

lemma active temporary reduce case2).

Lemma 19. ∀λ, λ′, λ′′, λ′′′, κ . if +(+λ) ∼` φλ′′′I κ and +(φλ′′′I κ) ∼` +λ and

λ ≤ λ′′ then +(φ(+λ′′)) ∼` φλ′′′I κ
This follows from lemmas 17 and 18 since ∃λ′′′′, κ such that

φλ′′′ = φλ′′′′I κ.

Lemma 20. ∀λ, λ′, λ′′, λ′′′, κ . if +(+λ) ∼` φλ′′′I κ and +(φλ′′′I κ) ∼` +λ and

λ ≤ λ′′ then +(φλ′′′I κ) ∼` φ(+λ′′)

This follows from lemmas 17 and 18 since ∃λ′′′′, κ such that

φλ′′′ = φλ′′′′I κ.

Lemma 21. ∀κ .+ (+κ) ∼` φκ and +(φκ) ∼` +κ

Proved using Prolog (see appendix D, lemma local temp self).

Lemma 22. ∀λ, λ′, κ, if +(+λ) ∼` φλ′ . and +(φλ′) ∼` +λ then

+(+(λ . κ)) ∼` φλ′ I κ and +(φλ′ I κ) ∼` +(λ . κ)

Proved using Prolog (see appendix D, lemma fld case1).

Lemma 23. ∀λ, λ′, κ, κ . if +(+λ) ∼` φλ′I κ and +(φλ′I κ) ∼` +λ then

+(+(λ . κ)) ∼` φλ′I κ I κ and +(φλ′I κ I κ) ∼` +(λ . κ)

This follows from lemmas 17 and 22.

Lemma 24. ∀λ, λ′, κ . if +(λ I κ) ∼` λ′ and +λ′ ∼` λ I κ then +(+(λ . κ)) ∼` λ′ and

+λ′ ∼` +(λ . κ)

This reasonably trivially follows from lemma 4 after expansion of I.

Lemma 25. ∀λ, κ . if +(φκ) ∼` λ and +λ ∼` φκ then +(+(−κ)) ∼` λ and

+λ ∼` +(−κ)
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Once again, this reasonably trivially follows from lemma 4 after expansion

of φ.

Lemma 26. ∀λ, λ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′ and +(φλ′) ∼` +λ

then −κ′ ≤ φλ′ I κ
Proved using Prolog (see appendix D,

lemma asnfld assigned value pre).

Lemma 27. ∀λ, λ′, κ, κ′, κ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′ and +(φλ′) ∼` +λ

then −κ′I κ ≤ φλ′ I κI κ
This follows from lemmas 6 and 26.

Lemma 28. ∀λ, λ′, κ, κ′, κ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′I κ′ and

+(φλ′I κ′) ∼` +λ

then −κ′I κ ≤ φλ′I κ′ I κI κ
This follows from lemmas 17 and 27.

Lemma 29. ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′′I κ′ and

+(φλ′′I κ′) ∼` +λ and φκ′I κ ∼g λ′ then φλ′′I κ′ I κI κ ∼g λ′

This follows from lemmas 1 and 28.

Lemma 30. ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′′I κ′ and

+(φλ′′I κ′) ∼` +λ and +(φκ′I κ) ∼` λ′ then +(φλ′′I κ′ I κI κ) ∼` λ′

This follows from lemmas 5 and 28.

Lemma 31. ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′′I κ′ and

+(φλ′′I κ′) ∼` +λ and +λ′ ∼` φκ′I κ then +λ′ ∼` φλ′′I κ′ I κI κ
This follows from lemmas 1 and 28.

Lemma 32. ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′′I κ′ and

+(φλ′′I κ′) ∼` +λ and +(λ′ . κ) ∼` φκ′I κ then

+(λ′ . κ) ∼` φλ′′I κ′ I κI κ
This is simply a more specialised version of lemma 31.

Lemma 33. ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′′I κ′ and

+(φλ′′I κ′) ∼` +λ and +(λ′ . κ) ∼` φκ′I κ then

+(+(λ′ . κ)) ∼` φλ′′I κ′ I κI κ
This follows trivially from lemmas 4 and 32.

Lemma 34. ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ′′I κ′ and

+(φλ′′I κ′) ∼` +λ and +(λ′ . κ) ∼` φκ′I κ then

+(λ′ . κ) ∼` +(φλ′′I κ′ I κI κ)

This follows trivially from lemmas 4 and 32.

Lemma 35. ∀λ, λ′ . if λ ∈ {iso−, iso, val, tag} and +(φλ) ∼` λ′ and +λ′ ∼` φλ then

φλ ∼g λ′

Proved using Prolog (see appendix D, lemma async local to global).
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Lemma 36. ∀λ, κ . if λ ∈ {iso−, iso, val, tag} then λ I κ ∈ {iso−, iso, val, tag}
Proved using Prolog (see appendix D,

lemma ephemeral sendable preserved).

Lemma 37. ∀λ, κ, κ . if Sendable(κ) and +(φκI κ) ∼` λ and +λ ∼` φκI κ then

λ ∼g φκI κ
This follows from lemmas 17, 35 and 36.

Lemma 38. ∀λ, κ, κ, κ′, κ′′ . if Sendable(κ) and +(φκI κ) ∼` λ and +λ ∼` φκI κ
then λI κ′′ ∼g φκI κI κ′
This follows from lemmas 8 and 37.

Lemma 39. ∀λ, κ, κ . if φλ ∼g λ′ then +(φλ) ∼` λ′ and +λ′ ∼` φλ
Proved using Prolog (see appendix D, lemma async global to local).

Lemma 40. ∀λ, κ, κ . if φκI κ ∼g λ then +(φκI κ) ∼` λ and +λ ∼` φκI κ
This follows from lemmas 17 and 39.

Lemma 41. ∀λ, κ, κ . if φκI κ ∼g λ then +(φκI κ) ∼` +λ and +(+λ) ∼` φκI κ
This follows from lemmas 4 and 40.
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4.3 Preservation of Well-Formed Visibility

Theorem. Well-formed visibility is preserved.

∀∆, χ, χ′, σ, σ′, e, e′, α, i . If

• WFV(∆, χ)

• WFT(∆, χ)

• χ, σ, e→ χ′, σ′, e′

• ∆(α, i) ` e : DT

then ∃∆′ such that

• ∆′(α, i) ` e′ : DT

• WFT(∆′, χ′)

• WFV(∆′, χ′)

As shown above, we need to show that for any heap satisfying well-formed visibility,

well-formed temporaries, doing any one valid step of execution of a well-typed expression

preserves well-formed visibility, well-formed temporaries and the type of the expression.

We now proceed by considering performing a case analysis on the execution rule

used (i.e. the third precondition above).

4.3.1 Uninteresting Cases

We can informally handle a large number of these cases given that they should not be

able to do anything unsafe.

The rules ExprHole and Global simply delegate their work to a contained expres-

sion, so obviously satisfy preservation if and only if their contained expression undergoing

evaluation also does.

The Null and Except rules simply assign the special constant value null to a

temporary. Since null does not point to an object in the heap we cannot have any paths

involving it, so well-formed visibility is trivially preserved.

The Return and ReturnBe rules simply discard the current topmost stack frame

and do not introduce further aliases, so well-formed visibility must be preserved.

The two constructor rules Ctor and Ator are simply special cases of the Sync and

Async rules respectfully where the this alias is newly created (which obviously cannot

cause a data-race since it is not aliased by anything else.

The rules for a method calls and starting execution of behaviours in an actor, Sync

and Behave respectively, seem complex at first glance however further inspection reveals

that they actually simply rename variables. The temporaries in the case of Sync are all

passive, and so we simply rename them to proper local variables in a new stack frame

with no changes in capabilities. Similarly for Behave we rename the local variables

in the message into the stack frame for executing the behaviour, once again with no

changes to the capabilities of the variables.
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Finally the Seq rule allows us to handle sequential execution of expressions by dis-

carding the first expression when it has been evaluated. This cannot possibly introduce

aliases or temporary values, so well-formed visibility must be preserved.

4.3.2 Case One: Active Temporary Reduction

If we are about to execute a rule that would create a new active temporary alias, we

must first weaken the capability assigned to any pre-existing active temporary in the

heap as described in section 3.13. An example of this is shown in figure 48: We replace

the active temporary ta with the passive temporary tp, and replace its capability with

the alias of some supertype such that the type of expression being evaluated remains

the same.

α ta tp

ι

λ +λ′′

Figure 48: Active temporary reduction.

We wish to show that ∀χ, χ′,∆,∆′, α, ϕ, ϕ′, E[·], α′ . if WFV(∆, χ) and WFT(∆, χ)

and χ, α ·ϕ, E[ta] χ′, α, ·ϕ′, E[tp] and ∆(α, i) ` E[ta] : DT then ∃λ′′ .∆′ = ∆[(α, i, tp) 7→
+λ′′] and λ′′ ≥ ∆(α, i, ta) and ∆′(α, i) ` E[tp] : DT and WFV(∆′, χ′). For the purposes

of this proof we assume that such a λ′′ exists and proceed by considering each of the

cases of well-formed visibility in turn, assuming the above preconditions hold.

4.3.2.1 Case One: Reduce: WFV1 (Global Paths)

α′α ta tp

ι′

λa +λ′′

ι

f, κ

pg′, λ′

Figure 49: Active temporary reduction: Global paths.
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Take arbitrary λ, λ′, ι, pg, pg′, assume that α 6= α′ and ∆′, χ′, α ` ι : λ, pg and

∆′, χ′, α′ ` ι : λ′, pg′. We wish to show that λ ∼g λ′.

We begin with a case analysis on the value of pg:

• If pg 6= (i, tp)
φ · fI then λ ∼g λ′ holds trivially by WFV1(∆, χ) as neither path

has changed compared to the old heap.

• If pg = (i, tp)
φ · fI then we have that:

(1) λ = φ(+λ′′)I κ by structure of pg and definition of visibility.

(2) Visibility of ι using the old temporary: ∆, χ, α ` ι : λaI κ, (i, ta) · fI.

(3) Visibility of the α′ path is unchanged: ∆′, χ′, α′ ` ι : λ′, pg′.

(4) Global compatibility of the old temporary path and the α′ path:

λaI κ ∼g λ′ by WFV1(∆, χ), (2) and (3)

(5) By lemma 11 and (4) we have that φ(+λ′′)I κ ∼g λ′.

(6) After substituting (5) for λ by (1) gives us λ ∼g λ′ as required.

4.3.2.2 Case One: Reduce: WFV2 (Local Non-Active Paths)

α ta tp

ι′

λa +λ′′

ι

f, κ

pe′, λ′

Figure 50: Active temporary reduction: Non-active local paths.

Take arbitrary λ, λ′, ι, pe, pe′, assume that ∆′, χ′, α ` ι : λ, pe and ∆′, χ′, α ` ι : λ′, pe′.

We wish to show that either +λ ∼` λ′ or χ, α ` Interferes(pe, pe′).

Interference Lemma:

If χ, α ` Interferes(pe[(i, ta)\(i, tp)], pe′[(i, ta)\(i, tp)]) then χ′, α ` Interferes(pe, pe′).

We once again begin by a case analysis over the values of pe and pe′:

• If pe = (i, tp)
φ · fI and pe′ = (i, tp)

φ · f′I (for non-empty fI and f′I) then we

have that:

Lemma 11: ∀λ, λ′, λ′′, κ . if λI κ ∼ λ′ and λ ≤ λ′′ then φ(+λ′′)I κ ∼ λ′
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(1) λ = φ(+λ′′)I κ by definition of visibility and pe.

(2) λ′ = φ(+λ′′)I κ′ by definition of visibility and pe′.

(3) Visibility of pe using the old temporary: ∆, χ, α ` ι : λaI κ, (i, ta) · fI

(4) Visibility of pe′ using the old temporary: ∆, χ, α ` ι : λaI κ′, (i, ta) · f′I

(5) By WFV2(∆, χ), (3) and (4) either

χ, α ` Interferes(pe[(i, ta)\(i, tp)], pe′[(i, ta)\(i, tp)]) (in which case we are

done by interference lemma) or both +(λaI κ) ∼` λaI κ′ and

+(λaI κ′) ∼` λaI κ.

(6) By (5) and lemma 12 we have that +(φ(+λ′′)I κ) ∼` φ(+λ′′)I κ′ and

+(φ(+λ′′)I κ′) ∼` φ(+λ′′)I κ.

(7) After substituting (6) for λ and λ′ by (1) and (2), we have +λ ∼` λ′ and

+λ′ ∼` λ as required.

• If pe = (i, tp)
φ · fI and pe′ 6= (i, tp)

φ · f′I (for non-empty fI) then we have that:

(1) λ = φ(+λ′′)I κ by definition of visibility and pe.

(2) Visibility of pe using the old temporary: ∆, χ, α ` ι : λaI κ, (i, ta) · fI · fI

(3) Visibility of the pe′ path is unchanged: ∆, χ, α ` ι : λ′, pe′.

(4) By WFV2(∆, χ), (2) and (3) either

χ, α ` Interferes(pe[(i, ta)\(i, tp)], pe′[(i, ta)\(i, tp)]) (in which case we are

done by interference lemma) or both +(λaI κ) ∼` λ′ and +λ′ ∼` λaI κ.

(5) By (4) and lemmas 13 and 14 we have that +(φ(+λ′′)I κ) ∼` λ′ and

+λ′ ∼` φ(+λ′′)I κ.

(6) After substituting (5) for λ by (1) gives us +λ ∼` λ′ and +λ′ ∼` λ as

required.

• If pe = (i, tp)
φ and pe′ = (i, tp)

φ · f′I (for non-empty f′I) then we have that:

(1) λ = φ(+λ′′) by definition of visibility and pe.

(2) λ′ = φ(+λ′′)I κ by definition of visibility and pe′.

(3) Visibility of pe using the old temporary: ∆, χ, α ` ι : λa, (i, ta)

(4) Visibility of pe′ using the old temporary: ∆, χ, α ` ι : λaI κ′, (i, ta) · f′I

(5) +(+λa) ∼` λaI κ′ and +(λaI κ′) ∼` +λa by WFV3(∆, χ), (3) and (4).

(6) By (5) and lemmas 15 and 16 we have that +(φ(+λ′′)) ∼` φ(+λ′′)I κ and

+(φ(+λ′′)I κ) ∼` φ(+λ′′).

(7) After substituting (6) for λ and λ′ by (1) and (2) gives us +λ ∼` λ′ and

+λ′ ∼` λ as required.

Lemma 12: ∀λ, λ′, κ, κ′ . if +(λI κ) ∼` λI κ′ and λ ≤ λ′ then +(φ(+λ′)I κ) ∼` φ(+λ
′)I κ′

Lemma 13: ∀λ, λ′, λ′′, κ . if +(λI κ) ∼` λ
′ and λ ≤ λ′′ then +(φ(+λ′′)I κ) ∼` λ

′

Lemma 14: ∀λ, λ′, λ′′, κ . if +λ ∼` λ
′I κ and λ′ ≤ λ′′ then +λ ∼` φ(+λ

′′)I κ
Lemma 15: ∀λ, λ′, κ . if +(+λ) ∼` λI κ′ and λ ≤ λ′ then +(φ(+λ′)) ∼` φ(+λ

′)I κ
Lemma 16: ∀λ, λ′, κ . if +(λI κ′) ∼` +λ and λ ≤ λ′ then +(φ(+λ′)I κ) ∼` φ(+λ

′)
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• If pe = (i, tp)
φ and pe′ 6= (i, tp)

φ · fI then we have that:

(1) λ = φ(+λ′′) by definition of visibility and pe.

(2) λ′ = φλ′′′I κ by definition of visibility.

(3) Visibility of pe using the old temporary: ∆, χ, α ` ι : λa, (i, ta)

(4) Visibility of the pe′ path is unchanged: ∆, χ, α ` ι : φλ′′′I κ, pe′.

(5) +(+λa) ∼` λ′ and +λ′ ∼` +λa by WFV3(∆, χ), (3) and (4).

(6) By (5) and lemmas 19 and 20 we have that +(φ(+λ′′)) ∼` φλ′′′I κ and

+(φλ′′′I κ) ∼` φ(+λ′′).

(7) After substituting (6) for λ and λ′ by (1) and (2) gives us +λ ∼` λ′ and

+λ′ ∼` λ as required.

• If none of the above cases (including commutativity) match then either +λ ∼` λ′

or χ′, α ` Interferes(pe, pe′) hold trivially by WFV2(∆, χ), since these paths have

not been changed (by previous cases and commutativity, neither pe nor pe′ may

not be of the form (i, tp)
φ · fI).

4.3.2.3 Case One: Reduce: WFV3 (Local Active Paths)

This case cannot possibly occur since well-formed temporaries requires us to have at

most one active temporary per actor before execution, and we have just destroyed it.

Hence we have successfully shown that active temporary reduction successfully pre-

serves well-formed visibility.

4.3.3 Case Two: Local

Local handles converting a local variable x into an active temporary ta by simply

constructing a new temporary pointing to the same address. We give the temporary the

same capability as that of the local variable.

α x ta

ι

κ κ

Figure 51: Execution of Local.

We wish to show that ∀χ, χ′,∆,∆′, α, ϕ, ϕ′, α′, if WFV(∆, χ) and WFT(∆, χ) and

χ, α · ϕ, x  χ′, α, ·ϕ′, ta and ∆′ = ∆[(α, i, ta) 7→ ∆(α, i, x)] then WFV(∆′, χ′). We

Lemma 19: ∀λ, λ′, λ′′, λ′′′, κ . if +(+λ) ∼` φλ
′′′I κ and +(φλ′′′I κ) ∼` +λ and λ ≤ λ′′ then

+(φ(+λ′′)) ∼` φλ
′′′I κ

Lemma 20: ∀λ, λ′, λ′′, λ′′′, κ . if +(+λ) ∼` φλ
′′′I κ and +(φλ′′′I κ) ∼` +λ and λ ≤ λ′′ then

+(φλ′′′I κ) ∼` φ(+λ
′′)
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proceed by considering each of the cases of well-formed visibility in turn, assuming the

above preconditions hold.

4.3.3.1 Case Two: Local: WFV1 (Global Paths)

α′α x ta

ι′

κ κ

ι

f, κ pg′, λ′

Figure 52: Execution of Local: Global paths.

Take arbitrary λ, λ′, ι, pg, pg′, assume that α 6= α′ and ∆′, χ′, α ` ι : λ, pg and

∆′, χ′, α′ ` ι : λ′, pg′. We wish to show that λ ∼g λ′.

We begin with a case analysis on the value of pg:

• If pg 6= (i, ta) · fI then λ ∼g λ′ holds trivially by WFV1(∆, χ) as neither path

has changed compared to the old heap.

• If pg = (i, ta) · fI then we have that:

(1) λ = κI κ by structure of pg and definition of visibility.

(2) Visibility of ι using the local variable in the old heap:

∆, χ, α ` ι : κI κ, (i, x) · fI.

(3) Visibility of the α′ path is unchanged: ∆, χ, α′ ` ι : λ′, pg′.

(4) Global compatibility of the local variable path and the α′ path: κI κ ∼g λ′

by WFV1(∆, χ), (2) and (3)

(5) After substituting (4) for λ by (1) gives us λ ∼g λ′ as required.
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4.3.3.2 Case Two: Local: WFV2 (Local Non-Active Paths)

α x ta

ι′

κ κ

ι

f, κ (non-empty)pe′, λ′

Figure 53: Execution of Local: Local non-active paths.

Take arbitrary λ, λ′, ι, pe, pe′, assume that ∆′, χ′, α ` ι : λ, pe and ∆′, χ′, α ` ι : λ′, pe′.

We wish to show that either +λ ∼` λ′ or χ′, α ` Interferes(pe, pe′).

Interference Lemma:

If χ, α ` Interferes(pe[(i, x)\(i, ta)], pe′[(i, x)\(i, ta)]) then χ′, α ` Interferes(pe, pe′).

We once again begin by a case analysis over the value of pe:

• If pe = (i, ta) · fI (for non-empty fI) then we have that:

(1) λ = κI κ by structure of pe and definition of visibility.

(2) Visibility of ι using the local variable x: ∆, χ, α ` ι : κI κ, (i, x) · fI

(3) Visibility of ι using pe′ after substitution: ∆, χ, α ` ι : λ, pe′[(i, x)\(i, ta)]

(4) By WFV2(∆, χ), (3) and (4) either

χ, α ` Interferes((i, x) · fI, pe′[(i, x)\(i, ta)]) (in which case we are done by

interference lemma) or both +(κI κ) ∼` λ′ and +λ′ ∼` κI κ.

(5) After substituting (4) for λ by (1), we have +λ ∼` λ′ and +λ′ ∼` λ as

required.

• If the above case (including commutativity) does not match then either +λ ∼` λ′

or χ′, α ` Interferes(pe, pe′) hold trivially by WFV2(∆, χ), since these paths have

not been changed (by previous cases with commutativity, neither pe nor pe′ may

be of the form (i, ta) · fI).
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4.3.3.3 Case Two: Local: WFV3 (Local Active Paths)

α x ta

ι′

κ κ
pe, λ

Figure 54: Execution of Local: Local active paths.

Take arbitrary λ, λ′, ι, pe, assume that ∆′, χ′, α ` ι : λ, pe and ∆′, χ′, α ` ι : λ′, (i, t′a).

We wish to show that both +(+λ′) ∼` λ and +λ ∼` +λ′.

We once again begin by a case analysis over the value of pe:

• If pe = (i, x)φ then we know that:

(1) λ = φκ by structure of pe and definition of visibility.

(2) λ′ = κ by structure of (i, ta) and definition of visibility.

(3) By lemma 21 we have that +(+κ) ∼` φκ and +(φκ) ∼` +κ.

(4) After substituting (3) for λ and λ′ by (1) and (2), we have +(+λ′) ∼` λ and

+λ ∼` +λ′ as required.

• Else we know that:

(1) λ′ = κ by structure of (i, ta) and definition of visibility.

(2) pe′ = pe[(i, x)\(i, ta)], an equivalent path in the old heap.

(3) The old path preserves visibility ∆, χ, α ` ι : λ, pe′

(4) Visibility of x in the old heap: ∆, χ, α ` ι : κ, (i, x)

(5) By WFV2(∆, χ), (3) and (4) either χ, α ` Interferes((i, x), pe′) (which

cannot happen in this case) or both +κ ∼` λ and +λ ∼` κ.

(6) By (5) and lemma 4 we have that +(+κ) ∼` λ and +λ ∼` +κ.

(7) After substituting (6) for λ′ by (1), we have +(+λ′) ∼` λ and +λ ∼` +λ′ as

required.

4.3.4 Case Three: Fld

Fld handles an expression of the form ta.f by first looking up the address of the active

temporary ta in the stack frame ϕ before then finding the object and its field in the

heap, assigning this to a new active temporary t′a. After execution, as shown in figure 55,

Lemma 21: ∀κ .+ (+κ) ∼` φκ and +(φκ) ∼` +κ

Lemma 4: ∀λ, λ′ . if λ ∼ λ′ then +λ ∼ λ′
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there is an additional active temporary alias to the field object ι′. All other aliases to

the field remain with the exception of the original ta which has now been destroyed.

α ta t′a

ι′

λ

ι

f, κ

λ . κ

Figure 55: Execution of Fld.

We wish to show that ∀χ, χ′,∆,∆′, α, ϕ, ϕ′, α′, if WFV(∆, χ) and WFT(∆, χ) and

χ, α · ϕ, ta.f  χ′, α, ·ϕ′, t′a and ∆′ = ∆[(α, i, t′a) 7→ ∆(α, i, ta) . F(χ(ta), f)] then

WFV(∆′, χ′). We proceed by considering each of the cases of well-formed visibility in

turn, assuming the above preconditions hold.

4.3.4.1 Case Three: Fld: WFV1 (Global Paths)

α′α ta t′a

ι′

λ

ι′′

f, κ

λ . κ

ι

f, κ

pg′, λ′

Figure 56: Execution of Fld: Global paths.

Take arbitrary λ, λ′, ι, pg, pg′, assume that α 6= α′ and ∆′, χ′, α ` ι : λ, pg and

∆′, χ′, α′ ` ι : λ′, pg′. We wish to show that λ ∼g λ′.

We begin with a case analysis on the value of pg:

• If pg 6= (i, t′a) · fI then λ ∼g λ′ holds trivially by WFV1(∆, χ) as neither path

has changed compared to the old heap.
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• If pg = (i, t′a) · fI then we have that:

(1) λ = λ . κI κ by structure of pg and definition of visibility.

(2) Visibility of ι using the old temporary:

∆, χ, α ` ι : λ I κI κ, (i, ta) · fI · fI.

(3) Visibility of the α′ path is unchanged: ∆, χ, α′ ` ι : λ′, pg′.

(4) Global compatibility of the old temporary path and the α′ path:

λ I κI κ ∼g λ′ by WFV1(∆, χ), (2) and (3)

(5) By expansion of I and (4) we have that λ . κI κ ∼g λ′.

(6) After substituting (5) for λ by (1) gives us λ ∼g λ′ as required.

4.3.4.2 Case Three: Fld: WFV2 (Local Non-Active Paths)

α ta t′a

ι′

λa

ι′′

f, κ

λa . κ

ι

f, κ (non-empty)

pe′, λ′

Figure 57: Execution of Fld: Local non-active paths.

Take arbitrary λ, λ′, ι, pe, pe′, assume that ∆′, χ′, α ` ι : λ, pe and ∆′, χ′, α ` ι : λ′, pe′.

We wish to show that either +λ ∼` λ′ or χ′, α ` Interferes(pe, pe′).

Interference Lemma:

If χ, α ` Interferes(pe[(i, ta) · fI\(i, t′a)], pe′[(i, ta) · fI\(i, t′a)])
then χ′, α ` Interferes(pe, pe′).

We once again begin by a case analysis over the values of pe and pe′:

• If pe = (i, t′a) · fI (for non-empty fI) and pe′ = (i, t′a) · f′I (for non-empty f′I)

then we have that:

(1) λ = λa . κI κ by structure of pe and definition of visibility.

(2) λ′ = λa . κI κ′ by structure of pe′ and definition of visibility.
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(3) Visibility of ι using the old temporary and fI:

∆, χ, α ` ι : λa I κI κ, (i, ta) · fI · fI

(4) Visibility of ι using the old temporary and f′I:

∆, χ, α ` ι : λa I κI κ′, (i, ta) · fI · f′I

(5) By WFV2(∆, χ), (3) and (4) either

χ, α ` Interferes(pe[(i, ta) · fI\(i, t′a)], pe′[(i, ta) · fI\(i, t′a)]) (in which case

we are done by interference lemma) or both +(λa I κI κ) ∼` λa I κI κ′
and +(λa I κI κ′) ∼` λa I κI κ.

(6) By expansion of I and (5) we have that +(λa . κI κ) ∼` λa . κI κ′ and

+(λa . κI κ′) ∼` λa . κI κ.

(7) After substituting (6) for λ and λ′ by (1) and (2), we have +λ ∼` λ′ and

+λ′ ∼` λ as required.

• If pe = (i, t′a) · fI (for non-empty fI) and pe′ 6= (i, t′a) · f′I then we have that:

(1) λ = λa . κI κ by structure of pe and definition of visibility.

(2) Visibility of ι using the old temporary:

∆, χ, α ` ι : λa I κI κ, (i, ta) · fI · fI

(3) Visibility of the pe′ path is unchanged from the old heap: ∆, χ, α ` ι : λ′, pe′

(4) By WFV2(∆, χ), (2) and (3) either

χ, α ` Interferes(pe[(i, ta) · fI\(i, t′a)], pe′[(i, ta) · fI\(i, t′a)]) (in which case

we are done by interference lemma) or both +(λa I κI κ) ∼` λ′ and

+λ′ ∼` λa I κI κ.

(5) By expansion of I and (4) we have that +(λa . κI κ) ∼` λ′ and

+λ′ ∼` λa . κI κ.

(6) After substituting (5) for λ by (1) gives us +λ ∼` λ′ and +λ′ ∼` λ as

required.

• If the above cases (including commutativity) do not match then either +λ ∼` λ′

or χ′, α ` Interferes(pe, pe′) hold trivially by WFV2(∆, χ), since these paths have

not been changed (by previous cases with commutativity, neither pe nor pe′ may

be of the form (i, t′a) · fI).

73



4.3.4.3 Case Three: Fld: WFV3 (Local Active Paths)

α ta t′a

ι′

λa

ι

f, κ

λa . κ
pe, λ

Figure 58: Execution of Fld: Local active paths.

Take arbitrary λ, λ′, ι, pe, assume that ∆′, χ′, α ` ι : λ, pe and ∆′, χ′, α ` ι : λ′, (i, t′a).

We wish to show that both +(+λ′) ∼` λ and +λ ∼` +λ′.

We once again begin by a case analysis over the value of pe:

• If ∃pe′′ such that pe = pe′′ · fI (where χ′(α, pe′′) = χ(α, (i, ta)) = ι′) then we

have that:

(1) ∃λ′′ such that λ = λ′′ I κ (by structure of pe and definition of visibility).

(2) λ′′ = φλ′′′I κ by definition of visibility.

(3) λ′ = λa . κ (by structure of (i, ta) and definition of visibility).

(4) Visibility of the path to ι′ using the old temporary: ∆, χ, α ` ι′ : λa, (i, ta)

(5) Visibility of the pe′′ path to ι′ is unchanged from the old heap after

substitution: ∆, χ, α ` ι′ : φλ′′′I κ, pe′′[(i, ta) · f.\(i, t′a)]

(6) +(+λa) ∼` λ′′ and +λ′′ ∼` +λa by WFV3(∆, χ), (4) and (5).

(7) By lemma 23 and (6) we have that +(+(λa . κ)) ∼` λ′′ I κ and

+(λ′′ I κ) ∼` +(λa . κ).

(8) After substituting (7) for λ and λ′ by (1) and (2), we have that +(+λ′) ∼` λ
and +λ ∼` +λ′ as required.

• If not the above case, then we have that:

(1) λ′ = λa . κ (by structure of (i, t′a) and definition of visibility).

(2) An equivalent path to pe in the old heap: pe′ = pe[(i, ta) · f.\(i, t′a)]

(3) Visibility of ι using the old temporary: ∆, χ, α ` ι : λa I κ, (i, ta) · fI

(4) Visibility of the path pe′ in old heap: ∆, χ, α ` ι : λ, pe′

Lemma 23: ∀λ, λ′, κ, κ . if +(+λ) ∼` φλ
′I κ and +(φλ′I κ) ∼` +λ then +(+(λ.κ)) ∼` φλ

′I κ I
κ and +(φλ′I κ I κ) ∼` +(λ . κ)
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(5) By WFV2(∆, χ), (3) and (4) either χ, α ` Interferes((i, ta) · f., pe′) (which

cannot be true in this case) or both +(λa I κ) ∼` λ and +λ ∼` λa I κ.

(6) By lemma 24 and (5) we have that +(+(λa . κ)) ∼` λ and +λ ∼` +(λa . κ).

(7) After substituting (6) for λ′ by (1) we have that +(+λ′) ∼` λ and

+λ ∼` +λ′ as required.

4.3.5 Case Four: AsnLocal

The AsnLocal execution rule handles assignment to local variables. For this rule we

have two situations to consider: the value being assigned (which simply gains an alias

and loses a passive temporary), and the value being overwritten (which loses an alias

and gains a temporary with an unaliased capability). These cases are shown in figure 59

and figure 60 respectively.

α tp x

ι

κ κ

Figure 59: Execution of the AsnLocal

rule: Assigned value.

α x ta

ι

κ −κ

Figure 60: Execution of the AsnLocal

rule: Overwritten value.

We wish to show that ∀χ, χ′,∆,∆′, α, ϕ, ϕ′, α′, if WFV(∆, χ) and WFT(∆, χ) and

χ, α · ϕ, x = tp  χ′, α, ·ϕ′, ta and ∆′ = ∆[(α, i, ta) 7→ −∆(α, i, x)] and WFT(∆′, χ′)

and ∆′(x) = ∆(tp) then WFV(∆′, χ′). We proceed by considering each of the cases of

well-formed visibility in turn for each of the assigned and overwritten values with the

above preconditions.

Lemma 24: ∀λ, λ′, κ . if +(λ I κ) ∼` λ
′ and +λ′ ∼` λ I κ then +(+(λ . κ)) ∼` λ

′ and +λ′ ∼`

+(λ . κ)
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4.3.5.1 Case Four: AsnLocal: WFV1 (Global Paths)

α′α tp x

ι′

ι

κ κ

f, κ
pg′, λ′

Figure 61: Execution of AsnLocal:

Assigned value with global paths.

α′α x ta

ι′

κ

ι

f, κ

−κ

pg′, λ′

Figure 62: Execution of AsnLocal:

Overwritten value with global paths.

Take arbitrary λ, λ′, ι, pg, pg′, assume that α 6= α′ and ∆′, χ′, α ` ι, λ, pg and

∆′, χ′, α′ ` ι, λ′, pg′. We wish to show that λ ∼g λ′.

We begin with a case analysis on the value of pg:

• If pg = (i, x)φ · fI then we have that:

(1) λ = φκI κ by structure of pg and definition of visibility.

(2) Visibility of ι using the old temporary tp: ∆, χ, α ` ι : φκI κ, (i, tp)φ · fI.

(3) Visibility of the α′ path is unchanged: ∆, χ, α′ ` ι : λ′, pg′.

(4) Global compatibility of the old temporary path and the α′ path:

φκI κ ∼g λ′ by WFV1(∆, χ), (2) and (3)

(5) From (4) we have that φκI κ ∼g λ′, which after substituting for λ by (1)

gives us λ ∼g λ′ as required.

• If pg = (i, ta) · fI then we have that:

(1) λ = −κI κ by structure of pg and definition of visibility.

(2) Visibility of ι using the overwritten variable x:

∆, χ, α ` ι : φκI κ, (i, x)φ · fI.

(3) Visibility of the α′ path is unchanged: ∆, χ, α′ ` ι : λ′, pg′.

(4) Global compatibility of the old variable (x) path and the α′ path:

φκI κ ∼g λ′ by WFV1(∆, χ), (2) and (3).

(5) From (4) and expansion of φ we have that −κI κ ∼g λ′.

(6) After substituting (5) for λ by (1) gives us λ ∼g λ′ as required.

• If neither of the above cases match, then λ ∼g λ′ holds trivially by WFV1(∆, χ)

as neither path has changed compared to the old heap.
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4.3.5.2 Case Four: AsnLocal: WFV2 (Local Non-Active Paths)

α tp x

ι′

ι

κ κ

f, κ
pe′, λ′

Figure 63: Execution of AsnLocal:

Assigned value with local non-active paths.

α x ta

ι′

κ

ι

f, κ (non-empty)

−κ

pe′, λ

Figure 64: Execution of AsnLocal:

Overwritten value with local non-active

paths.

Take arbitrary λ, λ′, ι, pe, pe′, assume that ∆′, χ′, α ` ι, λ, pe and ∆′, χ′, α ` ι, λ′, pe′.
We wish to show that either +λ ∼` λ′ or χ′, α ` Interferes(pe, pe′).

Interference Lemma:

If χ, α ` Interferes(pe[(i, tp)
φ\(i, x)φ][(i, x)−\(i, ta)], pe′[(i, tp)φ\(i, x)φ][(i, x)−\(i, ta)])

then χ′, α ` Interferes(pe, pe′).

We once again begin by a case analysis over the value of pe:

• If pe = (i, x)φ · fI then we have that:

(1) λ = φκI κ by structure of pe and definition of visibility.

(2) pe′′ = pe[(i, tp)
φ\(i, x)φ] = (i, tp)

φ · fI, the equivalent of pe in the old heap.

(3) pe′′′ = pe′[(i, tp)
φ\(i, x)φ][(i, x)−\(i, ta)], the equivalent of pe′ in the old

heap.

(4) Visibility of ι using the old temporary: ∆, χ, α ` ι : φκI κ, pe′′

(5) Visibility of the pe′ path is unchanged from in old heap using the pe′′′ path:

∆, χ, α ` ι : λ′, pe′′′

(6) By WFV2(∆, χ), (4) and (5) either χ, α ` Interferes(pe′′, pe′′′) (in which

case we are done by interference lemma) or both +(φκI κ) ∼` λ′ and

+λ′ ∼` φκI κ.

(7) From (6) we have that +(φκI κ) ∼` λ′ and +λ′ ∼` φκI κ, which after

substituting for λ by (1) gives us +λ ∼` λ′ and +λ′ ∼` λ as required.

• If pe = (i, ta) · fI (for non-empty fI) then we have that:

(1) λ = −κI κ by structure of pe and definition of visibility.

(2) pe′′ = pe[(i, x)−\(i, ta)] = (i, x)− · fI, the equivalent of pe in the old heap.
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(3) pe′′′ = pe′[(i, tp)
φ\(i, x)φ][(i, x)−\(i, ta)], the equivalent of pe′ in the old

heap.

(4) Visibility of ι using the overwritten variable x: ∆, χ, α ` ι : −κI κ, pe′′

(5) Visibility of the pe′ path is unchanged from the old heap using the pe′′′ path:

∆, χ, α ` ι : λ′, pe′′′

(6) By WFV2(∆, χ), (4) and (5) either χ, α ` Interferes(pe′′], pe′′′]) (in which

case we are done by interference lemma) or both +(−κI κ) ∼` λ′ and

+λ′ ∼` −κI κ.

(7) From (6) we have that +(−κI κ) ∼` λ′ and +λ′ ∼` −κI κ, which after

substituting for λ by (1) gives us +λ ∼` λ′ and +λ′ ∼` λ as required.

• If the above cases (including commutativity) do not match then either +λ ∼` λ′

or χ′, α ` Interferes(pe, pe′) hold trivially by WFV2(∆, χ), since these paths have

not been changed (by previous cases with commutativity, neither pe nor pe′ may

be of the form (i, x)φ · fI or (i, ta) · fI).

4.3.5.3 Case Four: AsnLocal: WFV3 (Local Active Paths)

α x ta

ι

κ
−κ

pe, λ

Figure 65: Execution of AsnLocal: Overwritten value with local active temporary

paths.

Take arbitrary λ, λ′, ι, pe, assume that ∆′, χ′, α ` ι, λ, pe and ∆′, χ′, α ` ι, λ′, (i, t′a). We

wish to show that both +(+λ′) ∼` λ and +λ ∼` +λ′.

Interference Lemma:

If χ, α ` Interferes(pe[(i, tp)
φ\(i, x)φ][(i, x)−\(i, ta)], pe′[(i, tp)φ\(i, x)φ][(i, x)−\(i, ta)])

then χ′, α ` Interferes(pe, pe′).

• We have that:

(1) λ′ = −κ by structure of (i, ta) and definition of visibility.

(2) pe′ = pe′[(i, tp)
φ\(i, x)φ][(i, x)−\(i, ta)], the equivalent of pe in the old heap.

(3) Visibility of ι using the old variable x: ∆, χ, α ` ι : −κ, (i, x)−

(4) Visibility of the pe path is unchanged from the old heap using pe′:

∆, χ, α ` ι : λ, pe′
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(5) By WFV2(∆, χ), (3) and (4) either χ, α ` Interferes((i, x)−, pe′) (which can-

not be true in this case) or both +(φκ) ∼` λ and +λ ∼` φκ.

(6) By lemma 25 and (4) we have that +(+(−κ)) ∼` λ and +λ ∼` +(−κ).

(7) After substituting (5) for λ′ by (1) we have that +(+λ′) ∼` λ and +λ ∼` +λ′

as required.

From the above cases we have now shown that the execution of an assignment to a

local variable preserves well-formed visibility.

4.3.6 Case Five: AsnFld

AsnFld handles assignment to a field of a temporary and has the form ta.f = tp. We

once again have two general cases to consider. The first of these is the value being

assigned (shown in figure 66) which, since we have a passive temporary, maintains the

same capability. The second is the value being overwritten (shown in figure 67) which is

returned by constructing a new active temporary with capability obtained by extracting

viewpoint adaptation. For each of these cases we must consider paths to both the object

itself and fields of the object, both locally and globally.

α ta tp

ι

λ

ι′

κ

κ′

Figure 66: Execution of AsnFld:

Assigned value.

α ta t′a

ι

λ

ι′

κ
λ .κ

Figure 67: Execution of AsnFld:

Overwritten value.

We wish to show that ∀χ, χ′,∆,∆′, α, ϕ, ϕ′, α′, if WFV(∆, χ) and WFT(∆, χ) and

χ, α · ϕ, ta.f = tp  χ′, α, ·ϕ′, t′a and ∆′ = ∆[(α, i, t′a) 7→ ∆(α, i, ta) .F(∆(α, i, ta) ↓1
, f)] and WFT(∆′, χ′) then WFV(∆′, χ′). We proceed by considering each of the cases

of well-formed visibility in turn for each of the assigned and overwritten values with the

above preconditions.

Lemma 25: ∀λ, κ . if +(φκ) ∼` λ and +λ ∼` φκ then +(+(−κ)) ∼` λ and +λ ∼` +(−κ)
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4.3.6.1 Case Five: AsnFld: WFV1 (Global Paths)

α′α ta tp

ι′

λa

ι′′

f, κ

κ′

ι

f, κ

pe′′, λ′′

pg′, λ′

Figure 68: Execution of AsnFld:

Assigned value global paths.

α′α ta t′a

ι′

λ

ι′′

f, κ

ι

f, κ

λ . κ

pg′, λ′

Figure 69: Execution of AsnFld:

Overwritten value global paths.

Take arbitrary λ, λ′, ι, pg, pg′, assume that α 6= α′ and ∆′, χ′, α ` ι, λ, pg and

∆′, χ′, α′ ` ι, λ′, pg′. We wish to show that λ ∼g λ′.

We begin with a case analysis on the value of pg:

• If pg = pe′′ · fI · fI and χ′(pe′′) = ι′ then we know that:

(1) λ = λ′′ I κI κ by structure of pg and definition of visibility.

(2) λ′′ = φλ′′′I κ′ by definition of visibility.

(3) Visibility of ι using the old temporary tp: ∆, χ, α ` ι : φκ′I κ, (i, tp)φ · fI.

(4) Visibility of the α′ path is unchanged: ∆, χ, α′ ` ι : λ′, pg′.

(5) Global compatibility of the old temporary path and the α′ path:

φκ′I κ ∼g λ′ by WFV1(∆, χ), (3) and (4)

(6) By lemma 29 and (5) we have that φλ′′′I κ′ I κI κ ∼g λ′.
(7) After substituting (6) for λ by (1) and (2) gives us λ ∼g λ′ as required.

• If pg = (i, t′a) · fI then we have that:

(1) λ = λ .κI κ by structure of pg and definition of visibility.

(2) Visibility of ι using the overwritten field path:

∆, χ, α ` ι : λ I κI κ, (i, ta) · fI · fI.

(3) Visibility of the α′ path is unchanged: ∆, χ, α′ ` ι : λ′, pg′.

(4) Global compatibility of the old field path and the α′ path: λ I κI κ ∼g λ′

by WFV1(∆, χ), (2) and (3).

Lemma 29: ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ
′′I κ′ and +(φλ′′I κ′) ∼`

+λ and φκ′I κ ∼g λ
′ then φλ′′I κ′ I κI κ ∼g λ

′
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(5) From (4) and expansion of I we have that λ .κI κ ∼g λ′.

(6) After substituting (5) for λ by (1) gives us λ ∼g λ′ as required.

• If neither of the above cases hold then λ ∼g λ′ holds trivially by WFV1(∆, χ) as

neither path has changed compared to the old heap.

4.3.6.2 Case Five: AsnFld: WFV2 (Local Non-Active Paths)

α ta tp

ι′

λa

ι′′

f, κ

κ′

ι

f, κ

pe′′, λ′′

pe′, λ′

Figure 70: Execution of AsnFld:

Assigned value local non-active paths.

α ta t′a

ι′

λa

ι′′

κ

ι

κ

λa . κ

pe′, λ′

Figure 71: Execution of AsnFld:

Overwritten value local non-active paths.

Take arbitrary λ, λ′, ι, pe, pe′, assume that ∆′, χ′, α ` ι, λ, pe and ∆′, χ′, α ` ι, λ′, pe′.
We wish to show that either +λ ∼` λ′ or χ′, α ` Interferes(pe, pe′).

Interference Lemma:

If χ, α ` Interferes(pe[(i, tp)
φ\pe′′][(i, ta) ·f. \(i, t′a)], pe′[(i, tp)φ\pe′′′][(i, ta) ·f. \(i, t′a)])

and χ′(pe′′) = χ′(pe′′′) = χ((i, tp)
φ) then χ′, α ` Interferes(pe, pe′).

We once again begin by a case analysis over the values of pe and pe′:

• If pe = pe′′ · fI · fI and pe′ = pe′′′ · fI · f′I and χ′(pe′′) = χ′(pe′′′) = χ((i, ta)) = ι′

and χ′(pe′′ · fI) = χ((i, tp)) = ι′′ then we have that:

(1) λ = λ′′ I κI κ by structure of pe and definition of visibility.

(2) λ′ = λ′′′ I κI κ′ by structure of pe′ and definition of visibility.

(3) Visibility of ι using tp and fI: ∆, χ, α ` ι : φκI κ, (i, tp)φ · fI

(4) Visibility of ι using tp and f′I: ∆, χ, α ` ι : φκI κ′, (i, tp)φ · f′I

(5) By WFV2(∆, χ), (3) and (4) either

χ, α ` Interferes((i, tp)
φ · fI, (i, tp)φ · f′I) (in which case we are done by

interference lemma) or both +(φκI κ) ∼` φκI κ′ and

+(φκI κ′) ∼` φκI κ.
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(6) From (5) and lemma we have that +(λ′′ I κI κ) ∼` λ′′′ I κI κ′ and

+(λ′′′ I κI κ′) ∼` λ′′ I κI κ.

(7) After substituting (6) for λ and λ′ by (1) and (2) we have that +λ ∼` λ′

and +λ′ ∼` λ as required.

• If pe = pe′′ · fI · fI and pe′ = (i, t′a) · f′I and χ′(pe′′) = χ((i, ta)) = ι′ and

χ′(pe′′ · fI) = χ((i, tp)) = ι′′ and χ′((i, t′a)) = χ((i, ta) · fI) = ι′′′ then we have

that:

(1) λ = λ′′ I κI κ by structure of pe and definition of visibility.

(2) λ′′ = φλ′′′I κ′ by definition of visibility.

(3) λ′ = λa . κI κ′ by structure of pe′ and definition of visibility.

(4) pe′′′ = pe[(i, tp)
φ\pe′′ ·fI] = (i, tp)

φ ·fI, the equivalent of pe in the old heap.

(5) pe′′′′ = pe′[(i, ta) · f. \(i, t′a)] = (i, ta) · f. · f′I, the equivalent of pe′ in the

old heap.

(6) Visibility of pe′′′ in the old heap: ∆, χ, α ` ι : φκ′I κ, pe′′′

(7) Visibility of pe′′′′ in the old heap: ∆, χ, α ` ι : λa . κI κ, pe′′′′

(8) By WFV2(∆, χ), (6) and (7) either χ, α ` Interferes(pe′′′, pe′′′′) (in which

case we are done by interference lemma) or both +(φκ′I κ) ∼` λa . κI κ
and +(λa . κI κ) ∼` φκ′I κ.

(9) From (8) and lemmas 30 and 31 we have that

+(φλ′′′I κ′ I κI κ) ∼` λa . κI κ′ and +(λa . κI κ′) ∼` φλ′′′I κ′ I κI κ.

(10) After substituting (9) for λ and λ′ by (1) through (3) gives us +λ ∼` λ′ and

+λ′ ∼` λ as required.

• If pe = pe′′ · fI · fI and χ′(pe′′) = χ((i, ta)) = ι′ and χ′(pe′′ · fI) = χ((i, tp)) = ι′′,

and neither of the previous cases, then we have that:

(1) λ = λ′′ I κI κ by structure of pe and definition of visibility.

(2) λ′′ = φλ′′′I κ′ by definition of visibility.

(3) pe′′′ = pe[(i, tp)
φ\pe′′ ·fI] = (i, tp)

φ ·fI, the equivalent of pe in the old heap.

(4) Visibility of ι using the old path: ∆, χ, α ` ι : φκI κ, pe′′′

(5) Visibility of the pe′ path is unchanged from the old heap: ∆, χ, α ` ι : λ′, pe′

(6) By WFV2(∆, χ), (4) and (5) either χ, α ` Interferes(pe′′′, pe′) (in which case

we are done by interference lemma) or both +(φκI κ) ∼` λ′ and

+λ′ ∼` φκI κ.

Lemma 30: ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ
′′I κ′ and +(φλ′′I κ′) ∼`

+λ and +(φκ′I κ) ∼` λ
′ then +(φλ′′I κ′ I κI κ) ∼` λ

′

Lemma 31: ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ
′′I κ′ and +(φλ′′I κ′) ∼`

+λ and +λ′ ∼` φκ
′I κ then +λ′ ∼` φλ

′′I κ′ I κI κ
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(7) From (6) and lemmas 30 and 31 we have that +(φλ′′′I κ′ I κI κ) ∼` λ′

and +λ′ ∼` φλ′′′I κ′ I κI κ.

(8) After substituting (7) for λ by (1) and (2) gives us +λ ∼` λ′ and +λ′ ∼` λ
as required.

• If pe = (i, t′a) · fI and neither of the previous cases, then we have that:

(1) λ = λa . κI κ by structure of pe and definition of visibility.

(2) pe′′ = pe[(i, ta) · f. \(i, t′a)] = (i, ta) · f. · fI, the equivalent of pe in the old

heap.

(3) Visibility of ι using the old path: ∆, χ, α ` ι : λa . κI κ, pe′′

(4) Visibility of the pe′ path is unchanged from the old heap: ∆, χ, α ` ι : λ′, pe′

(5) By WFV2(∆, χ), (4) and (5) either χ, α ` Interferes(pe′′, pe′) (in which case

we are done by interference lemma) or both +(λa . κI κ) ∼` λ′ and

+λ′ ∼` λa . κI κ.

(6) After substituting (5) for λ by (1) we have +λ ∼` λ′ and +λ′ ∼` λ as

required.

• If the above case (including commutativity) does not then either +λ ∼` λ′ or

χ′, α ` Interferes(pe, pe′) hold trivially by WFV2(∆, χ), since these paths have

not been changed (by previous cases with commutativity, neither pe nor pe′ may

be of the form pe′′ · fI · fI).

4.3.6.3 Case Five: AsnFld: WFV3 (Local Active Paths)

α ta t′a

ι

λ

ι′

κ
λ .κpe′, λ′

Figure 72: Execution of AsnFld: Overwritten value

with local active temporary paths.

Take arbitrary λ, λ′, ι, pe, assume that ∆′, χ′, α ` ι, λ, pe and ∆′, χ′, α ` ι, λ′, (i, t′a). We

wish to show that both +(+λ′) ∼` λ and +λ ∼` +λ′.

Lemma 30: ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ
′′I κ′ and +(φλ′′I κ′) ∼`

+λ and +(φκ′I κ) ∼` λ
′ then +(φλ′′I κ′ I κI κ) ∼` λ

′

Lemma 31: ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ
′′I κ′ and +(φλ′′I κ′) ∼`

+λ and +λ′ ∼` φκ
′I κ then +λ′ ∼` φλ

′′I κ′ I κI κ
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Interference Lemma:

If χ, α ` Interferes(pe[(i, tp)
φ\pe′′][(i, ta) ·f. \(i, t′a)], pe′[(i, tp)φ\pe′′′][(i, ta) ·f. \(i, t′a)])

and χ′(pe′′) = χ′(pe′′′) = χ((i, tp)
φ) then χ′, α ` Interferes(pe, pe′).

We once again begin by a case analysis over the value of pe:

• If pe = pe′′ · fI · fI for non-empty fI where χ′(pe′′) = χ((i, ta)) = ι′, then we

know that:

(1) λ = λ′′ I κI κ

(2) λ′′ = φλ′′′I κ′

(3) λ′ = λa . κ

(4) ∆, χ, α ` ι : φκ′I κ, (i, tp)φ · fI

(5) ∆, χ, α ` ι : λa . κ, (i, ta) · f.

(6) By WFV2(∆, χ), (4) and (5) either χ, α ` Interferes((i, tp)
φ · fI, (i, ta) · f. )

(which cannot happen in this case) or both +(φκ′I κ) ∼` λa . κ and

+(λa . κ) ∼` φκ′I κ.

(7) By (6) and lemmas 33 and 34 we have that both

+(+(λa . κ)) ∼` φλ′′′I κ′ I κI κ and +(φλ′′′I κ′ I κI κ) ∼` +(λa . κ).

(8) After substituting (7) for λ and λ′ by (1) through (3) we have +(+λ′) ∼` λ
and +λ ∼` +λ′ as required.

• If the above case does not hold, then we know that:

(1) λ′ = λa . κ

(2) ∆, χ, α ` ι : λa . κ, (i, ta) · f.

(3) ∆, χ, α ` ι : λ, pe

(4) By WFV2(∆, χ), (2) and (3) either χ, α ` Interferes(pe, (i, ta) · f. ) (which

cannot happen in this case) or both +λ ∼` λa . κ and +(λa . κ) ∼` λ.

(5) After substituting (4) for λ′ by (1) we have +λ ∼` λ′ and +λ′ ∼` λ.

(6) By (5) and lemma 4 we have +λ ∼` +λ′ and +(+λ′) ∼` λ as required.

From the above cases we have now shown that the execution of an assignment to a

field preserves well-formed visibility.

4.3.7 Case Six: Async

The Async rule handles invocation of a behaviour in an actor and has the form ta.b(tp)

where ta points to the actor on which the behaviour is to be executed and tp are the

Lemma 33: ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ
′′I κ′ and +(φλ′′I κ′) ∼`

+λ and +(λ′ . κ) ∼` φκ
′I κ then +(+(λ′ . κ)) ∼` φλ

′′I κ′ I κI κ
Lemma 34: ∀λ, λ′, λ′′, κ, κ′, κ, κ′ . if κ′ ≤ κ and λ / κ′ and +(+λ) ∼` φλ

′′I κ′ and +(φλ′′I κ′) ∼`

+λ and +(λ′ . κ) ∼` φκ
′I κ then +(λ′ . κ) ∼` +(φλ′′I κ′ I κI κ)
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arguments to the behaviour. Since the sending actor (α) has the receiver as ta in this

case is guaranteed to have capability tag, so we ignore it. One final restriction is that

the capability of the arguments being sent must be sendable, i.e. κ ∈ {iso, val, tag}.

α tp α xj

ι

κ
κ

Figure 73: Execution of Async.

We wish to show that ∀χ, χ′,∆,∆′, α, ϕ, ϕ′, α′, if WFV(∆, χ) and WFT(∆, χ) and

χ, α · ϕ, ta.b(tp)  χ′, α, ·ϕ′, ta and ∆′ = ∆[(α′,−i, x) 7→ ∆(α, i, tp)] and WFT(∆′, χ′)

then WFV(∆′, χ′). We proceed by considering each of the cases of well-formed visibility

in turn assuming the above preconditions hold.

4.3.7.1 Case Six: Async: WFV1 (Global Paths)

Take arbitrary λ, λ′, ι, pg, pg′, assume that α 6= α′ and ∆′, χ′, α ` ι, λ, pg and

∆′, χ′, α′ ` ι, λ′, pg′. We wish to show that λ ∼g λ′.

We begin with a case analysis on the value of pg′:

• If pg′ = (−i, xj)φ · fI and then we know that:

(1) λ′ = φκI κ by structure of pg′ and definition of visibility.

(2) Visibility of ι using the old temporary tp: ∆, χ, α ` ι : φκI κ, (i, tp)φ · fI.

(3) Visibility of the α path is unchanged: ∆, χ, α ` ι : λ, pg (since if it did

change, it was because it was also an argument to the function, in which

case we are in WFV2 instead).

(4) By WFV2(∆, χ), (2) and (3) either χ, α ` Interferes(pg, (i, tp)
φ · fI) or

both +(φκI κ) ∼` λ and +λ ∼` φκI κ.

(5a) Assume that the latter of (4) holds, by lemma 37 we have that λ ∼g φκI κ.

(6a) Substituting (5a) for λ′ by (1) we have that λ ∼g λ′ as required.

(5b) Assume that the interference property of (4) holds. Since we know that we

are not in the exact same path (see (3)), there must be some prefix such

that pg′ = (−i, x)φ · f′I · f′′I and pg = pg′′ · f′′′I and

χ′((−i, x)φ · f′I) = χ((i, tp)
φ · f′I) = χ′(pg′′) = χ(pg′′) = ι′ which did not

interfere.

Lemma 37: ∀λ, κ, κ . if Sendable(κ) and +(φκI κ) ∼` λ and +λ ∼` φκI κ then λ ∼g φκI κ
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(6b) Visibility of the first prefix: ∆, χ, α ` ι : φκI κ′, (i, tp)φ · f′I.

(7b) λ = λ′′I κ′′′ by structure of pg and visibility.

(8b) By WFV2(∆, χ), (6b) and (7b) either χ, α ` Interferes(pg, (i, tp)
φ · fI)

(which cannot happen in these path prefixes by definition) or both

+(φκI κ′) ∼` λ′′ and +λ′′ ∼` φκI κ′.

(9b) By (8b) and LEMMA (∀λ′′, κ, κ′, κ′′, κ′′′ . if Sendable(κ) and

+(φκI κ′) ∼` λ′′ and +λ′′ ∼` φκI κ′ then λ′′I κ′′′ ∼g φκI κ′I κ′′)
lemma 38 we have that λ′′I κ′′′ ∼g φκI κ′I κ′′.

(10b) By (9b), after substituting for λ and λ′ by (1) and (5b) through (7b) we

have that λ ∼g λ′ as required.

• If the above case does not hold then λ ∼g λ′ holds trivially by WFV1(∆, χ) as

neither path has changed compared to the old heap.

4.3.7.2 Case Six: Async: WFV2 (Local Non-Active Paths)

Take arbitrary λ, λ′, ι, pe, pe′, assume that ∆′, χ′, α′ ` ι, λ, pe and ∆′, χ′, α′ ` ι, λ′, pe′.
We wish to show that either +λ ∼` λ′ or χ′, α′ ` Interferes(pe, pe′).

We begin by a case analysis over the values of pe and pe′:

• If pe = (−i, xj)φ · fI and pe′ = (−i, xk)φ · f′I then we are done trivially: both

paths satisfied WFV2(∆, χ) in α, so they must satisfy WFV2(∆′, χ′) in α′.

• If pe = (−i, xj)φ · fI and pe′ 6= (−i, xk)φ · f′I then we know that:

(1) λ = φκI κ by structure of pe and definition of visibility.

(2) Visibility of ι using the old temporary tp: ∆, χ, α ` ι : φκI κ, (i, tp)φ · fI.

(3) Visibility of the pe′ path is unchanged: ∆, χ, α′ ` ι : λ′, pe′

(4) By WFV1(∆, χ), (2) and (3) we have that φκI κ ∼g λ′.

(5) By (4) and lemma 40 we have that +(φκI κ) ∼` λ′ and +λ′ ∼` φκI κ.

(6) After substituting (5) for λ by (1) we have that +λ ∼` λ′ and λ′ ∼` λ as

required.

• If the above cases (including commutativity) do not then either +λ ∼` λ′ or

χ′, α ` Interferes(pe, pe′) hold trivially by WFV2(∆, χ), since these paths have

not been changed (by previous cases with commutativity, neither pe nor pe′ may

be of the form (−i, xj)φ · fI).

Lemma 38: ∀λ, κ, κ, κ′, κ′′ . if Sendable(κ) and +(φκI κ) ∼` λ and +λ ∼` φκI κ then λI κ′′ ∼g

φκI κI κ′

Lemma 40: ∀λ, κ, κ . if φκI κ ∼g λ then +(φκI κ) ∼` λ and +λ ∼` φκI κ
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4.3.7.3 Case Six: Async: WFV3 (Local Active Paths)

Take arbitrary λ, λ′, ι, pe, assume that ∆′, χ′, α′ ` ι, λ, pe and ∆′, χ′, α′ ` ι, λ′, (i, ta).
We wish to show that both +(+λ′) ∼` λ and +λ ∼` +λ′.

We begin by a case analysis over the value of pe:

• If pe = (−i, xj)φ · fI then we know that:

(1) λ = φκI κ by structure of pe and definition of visibility.

(2) Visibility of ι using the old temporary tp: ∆, χ, α ` ι : φκI κ, (i, tp)φ · fI.

(3) Visibility of the ta path is unchanged: ∆, χ, α′ ` ι : λ′, (i, ta)

(4) By WFV1(∆, χ), (2) and (3) we have that φκI κ ∼g λ′.

(5) By (4) and lemma 41 we have that +(φκI κ) ∼` +λ′ and

+(+λ′) ∼` φκI κ.

(6) After substituting (5) for λ by (1) we have that +(+λ′) ∼` λ and +λ ∼` +λ′

as required.

• If the above case does not hold then +(+λ′) ∼` λ and +λ ∼` +λ′ hold trivially

by WFV3(∆, χ), since these paths have not been changed.

4.3.8 Case Seven: Rec

The Rec rule handles recovery of a temporary ta from an initial capability λ to a

stronger capability R(λ) as defined in section 3.9. This is shown diagrammatically in

figure figure 74.

α ta t′a

ι

λ
R(λ)

Figure 74: Execution of Rec.

Unfortunately, proving that recovery satisfies our theorem would require a stricter

precondition than what we have from well-formedness. We would instead have to

strengthen our guarantee to that given by the recover block (that the expression within

the block is able to be typed without non-sendable local variables) and prove that it

is preserved for all possible executions once again, should they occur within a recover

block. This is understandably intractable given the time constraints of this report, so

we omit attempting to show that recovery preserves well-formedness.

Lemma 41: ∀λ, κ, κ . if φκI κ ∼g λ then +(φκI κ) ∼` +λ and +(+λ) ∼` φκI κ
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5 Extending with Inheritance

Our first extension to the PonyG model defined in section 3 is the addition of inheritance

to the language. The Pony language compiler supports both nominal and structural

inheritance using traits and interfaces to express these respectively. Classes, actors

as well as traits and interfaces themselves may inherit from any number of traits and

interfaces, while classes and actors on the other hand may not be inherited from at

all. Traits and interfaces provide a set of method and behaviour stubs declaring the

signatures of the functions to be provided by any inheriting classes.

It may be interesting to note that despite the fact that interfaces provide us with

structural inheritance, we are still free to use it in a nominal fashion by explicitly electing

to inherit from an interface. These interfaces are explicitly checked by the compiler (in

the same way that nominal inheritance is checked) at the site of the inheriting definition

rather than at the point that structural subtyping is required.

Since traits and interfaces may not be constructed at runtime, our definition of

the operational semantics and well-formed heaps are left unchanged from the definition

presented in section 3.2 and section 3.16 respectively. Well-formed heaps works based

on the subtyping relationship to determine whether objects are well-formed, however we

can avoid having to touch the definition directly by simply extending subtyping, as we

would have done anyway.

The new types maintain the same structure as the actors and classes previously

defined, each has a type identifier and capability. Since this structure is maintained,

we find that we can avoid needing to update a large number of our definitions: aliasing

(+), unaliasing (−), recovery (R), viewpoint-adaptation (. and . ), whether a type is

sendable and safe-to-write can all be left unmodified from our original definitions for

PonyG .

Finally, the Pony language enforces that the graph of inheritance for interfaces and

traits is acyclic, since all traits and interfaces in a cycle will have the exact same method

and behaviour stubs. This is not important for our purposes and does not threaten the

safety of the language, so we omit it from this model.
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5.1 Syntax

P ∈ Program ::= NT ST CT AT

NT ∈ TraitDef ::= trait N MS BS I

ST ∈ InterfaceDef ::= interface S MS BS I

CT ∈ ClassDef ::= class C F K M I

AT ∈ ActorDef ::= actor A F K M B I

I ∈ ParentID ::= N | S
RS ∈ RunTypeID ::= A | C
DS ∈ DeclTypeID ::= A | C | N | S
BS ∈ BehvStub ::= be b(x : DT)

MS ∈ FuncStub ::= funκ m(x : DT) : DT

Figure 75: Changes to syntax.

N ∈ TraitID S ∈ InterfaceID

Figure 76: New identifiers.

We begin by modifying the syntax of PonyG to accommodate this new functionality, with

the result shown in figure 75 (changes highlighted, unchanged rules omitted). We first

add two new identifiers N and S to distinguish traits (nominal) and interfaces (structural)

from class or actor identifiers. Using these new identifiers, we now define five new syntax

rules and augment a further four:

• We add the two terms BehvStub and FuncStub to allow for behaviour and method

stubs. Note that these differ from the original definitions of Behv and Func in

figure 3 only in that they lack a function body.

• We add a new term ParentID which may refer to either a trait or interface identifier

(see figure 76), and augment the rules for classes and actor definitions with a set

of inherited traits or interfaces.

• Trait and interfaces definitions, TraitDef and InterfaceDef , are created containing

an identifier, a list of method and behaviour stubs, as well as any number of

inherited traits or interfaces.

• The definition of a program is augmented with a list of trait and interface defini-

tions.

• Finally we update the definition of declared types (DeclTypeID) to allow for usage

of traits and interfaces in type signatures. Note that we omit this change from the

RunTypeID rule, since traits and interfaces may not exist at runtime.

As we said previously, the lack of effect on the operational semantics means that no

changes to the structure of expressions or expression holes are required. Additionally,
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due to the distinction between declared type identifiers and runtime type identifiers (DS

and RS respectfully), we implicitly already have the distinction that only types that can

exist at runtime can be created: recall the definition of expressions from section 3.1,

RS.k(e), only actors and classes may have a constructor invoked.

5.2 Compatibility

Our original definition of compatibility over types (defined in section 3.4.3) was con-

structed using the implicit assumption that two distinct declared type identifiers (DS)

could never refer to the same underlying class. If we maintained this definition, the

situation in figure 77 would fail to satisfy compatibility despite being a perfectly valid

heap if the class C was defined to inherit from the trait N.

α

ι

N ref C ref

Figure 77: An example heap (Valid if C v N).

5.2.1 Subclassing

In order to avoid the issue highlighted in figure 77, we first define a new relation DS v DS′

to mean that the type DS inherits (either structurally or nominally) from the type DS′.

Note the absence of any capability λ in this relation, as we are only concerned with

inheritance rather than full-blown subtyping.

DS v DS′′ DS′′ v DS′

DS v DS′
SC-Trans

DS v DS
SC-Refl

I ∈ Is(DS)

DS v I
SC-Nominal

Ms(S) ⊆Ms(DS)

Bs(S) ⊆ Bs(DS)

DS v S
SC-Struct

Figure 78: Subclassing.

We define the relation in figure 78, its rules are as follows:

• The two rules SC-Trans and SC-Refl define subclassing as a reflexive and tran-

sitive relation.

• As shown in SC-Nominal, a type identifier DS is a subclass of some parent iden-

tifier I (which may be either a trait or an interface as described in the syntax

on section 5.1) if the parent is a member of the set of traits and interfaces that
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DS explicitly inherits from (where I retrieves the aforementioned set of inherited

definitions, see appendix A).

• Finally, SC-Struct handles structural inheritance. In this case a type identifier

DS is a subclass of an interface S if the methods and behaviours required by S are

a subset of those provided by DS (Ms and Bs retrieves the set of method and

behaviour stubs for a definition, once again see appendix A).

5.2.2 Type Compatibility

λ ∼ λ′

χ(ι) ↓1v DS χ(ι) ↓1v DS′

χ, ι ` DSλ ∼ DS′ λ′

Figure 79: Compatible types using subclassing.

Now that we have a definition of subclassing we can remedy the problematic heap posed

in figure 77 with our revised definition of compatibility over declared types, shown in

figure 79.

While previously we required the exact same type identifier DS for both the left and

right side of the relation, we now allow the two types of an object ι to differ as long as

the actual type of the object is a subclass of the two.

Note how this relation now depends explicitly on the heap and actor on which we

make this judgement. We could have simply ignored the type entirely however as we

will see when we come to add further extensions such as unions (see section 6.2), this

would lead us to classify many perfectly satisfactory heaps as invalid. It may seem that

this complicates the definition of compatibility, however since an object will not change

its actual type during execution, the majority of the lemmas we had previously defined

in section 4.2 will continue to hold.

5.3 Subtyping

DT ≤ DT′′ DT′′ ≤ DT′

DT ≤ DT′
S-Trans

λ ≤ λ′

DSλ ≤ DSλ′
S-Cap

DS v DS′

DSλ ≤ DS′ λ
S-Subclass

Figure 80: Changes to subtyping of declared types.

In order to pass around classes and actors as if they were traits or interfaces we must

ensure that our definition of subtyping (originally defined in section 3.10) allows us

to treat one type as the other when combined with the T-Subsume rule for typing

(section 3.12).

One straightforward way of implementing this is simply to augment the subtyping

relation definition with two further rules, one each for nominal and structural subtyping,

however note how we have already defined these rules for a separate relation, specifically
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v when we discussed compatibility in section 5.2.1. We can therefore escape with

defining just a single new relation S-Subclass, shown in figure 80. By delegating

the relation to subclassing, we allow the subtyping rule to handle both nominal and

structural subtyping with no further work.

With this in place we find that we in fact need no actual changes to the type rules

originally presented for PonyG in section 3.12. Field and method lookup are amended

in appendix A as expected and the remainder of the type system simply works with no

further effort on our part.

5.4 Visibility

χ(α) ↓1= A

∆, χ, α ` α : A ref, (0, this)
V-This

χ(α, (i · z)) = ι

∆(α, i, z) = DT

∆, χ, α ` ι : DT, (i, z)
V-Read

z 6= ta

χ(α, (i · z)) = ι

∆(α, i, z) = DT

∆, χ, α ` ι : −DT, (i, z)−
V-Write

∆, χ, ι ` ι′′ : DT, pg
χ(ι′′, f) = ι′

F(χ(ι′′) ↓1, f) = DT′

∆, χ, ι ` ι′ : DT I DT′, pg · fI
V-Field

Figure 81: Visibility.

Our previous definition of visibility (section 3.14) was defined to give simply the capa-

bility of a path rather than its full declared type. This was sufficient for our purposes

at that time and simplified proving preservation of well-formedness, however with the

knowledge that we will eventually be adding unions, tuples and intersection types we

must now alter visibility to involve entire declared types. The new definition of visibility

is given in figure 81 and contains the following modified rules:

• An actor sees itself in V-This as its own type with capability ref, as we had in

the original definition.

• Reading and writing to local variables (V-Read and V-Write simply replace

occurrences of capabilities with declared types and otherwise remain unchanged.

• V-Field is modified similarly to the other rules, we simply replace occurrences of

capabilities with the corresponding declared types.

We have already declared all the used operators for declared types a long time

in advance in addition to their standard definitions on capabilities as we made our

way through the base model for PonyG (unaliasing: section 3.6, viewpoint adaptation:

section 3.11), so no further work is required to modify visibility in order to use this new

definition.

Note that this definition maps very closely to that originally presented in section 3.14

and so there is no reason for lemmas using such a definition to become invalid, although

we do not pursue attempting to prove these properties formally.
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5.5 Well-Formed Visibility

WFV (∆, χ) iff

∀α, α′, ι ∈ χ.∀pe, pe′, pg, pg′.∀i, ta.∀DT, DT′,

1. If α 6= α′ and ∆, χ, α ` ι, DT, pg and ∆, χ, α′ ` ι, DT′, pg′ then χ, ι ` DT ∼g DT′.

2. If ∆, χ, α ` ι, DT, pe and ∆, χ, α ` ι, DT′, pe′ then either

(a) χ, ι ` +DT ∼` DT′, or

(b) χ, α ` Interferes(pe, pe′).

3. If ∆, χ, α ` ι, DT, pe and ∆, χ, α ` ι, DT′, (i, ta) then χ, ι ` +(+DT′) ∼` DT and

χ, ι ` +DT ∼` +DT′.

Figure 82: Well-formed visibility.

As with visibility, we now need to slightly modify well-formedness to use our new notions

of visibility and compatibility on full declared types. This is presented on figure 82.

The main concern in this case is whether the replacement of straight-forward com-

patibility on capabilities (λ ∼ λ′) with the more complex declared type compatibility

(DT ∼ DT′) is amenable to being able to prove that well-formedness is preserved through

execution. As we mentioned in the revised definition of compatibility (section 5.2.2),

although we now depend of the actual type of the object being considered rather than

simply its capability, we can argue that since the type of the object does not change

there is no reason why this constraint should be broken. The remaining constraint is

that on the capabilities of the declared types, which is no different from our original

definition of well-formed visibility in section 3.15.
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6 Extending with Union Types

We continue our extensions to the PonyG language started in section 5 by now extending

our model with support for union types. The Pony compiler supports arbitrary unions

of types but for ease we restrict ourselves to purely unions of pairs of types as opposed

to n-element unions. It is trivial to extend this to any number of types per union simply

by nesting union types within one-another.

Once again there are no changes to the operational semantics of the model, since

union types cannot actually exist at runtime as they must be either one type or the other,

or something that inherits from both types of the union. The compiler also supports

the idea of a match statement in order to examine an object with a union type and

extract the corresponding actual type the object at runtime, however we omit this from

our model in favour of allowing methods to be called on union types, something also

supported by the compiler, which dispatches the method to the actual type at runtime.

As we had when extending PonyG with inheritance, the typing rules need no further

modification besides the additional subtyping rules presented in this extension. We

allow methods and behaviours to be invoked on union types as long as the types of

the arguments are exactly the same (we can relax this behaviour in section 8, when

intersection types are introduced), and hence method and behaviour lookup (Md, see

appendix A) are amended such that invoking a method on a union returns a union of

its result types and similarly for a behaviour.

6.1 Syntax

DT ∈ DeclType ::= DSλ | (DT|DT)

Figure 83: Changes to syntax.

Extending the PonyG syntax to handle union types is extremely simple: we augment

the definition of declared types (DT) to allow unions in addition to our original simple

type identifiers with capabilities. In keeping with the Pony compiler, the union itself

does not have a capability of its own. Changes are shown in figure 83.

No changes are needed to the definitions of functions, behaviours or in fact anything

else, since they simply require a declared type to be present. Since this may now be a

union type, we do not need to concern ourselves with these cases explicitly.

6.2 Compatibility

Now that we have union types we can much more easily see the issue that was hinted at

when we defined our new compatibility over declared types in section 5.2.2. Consider the

(perfectly valid) heap shown in figure 84, where a single actor α has two distinct paths

to an object ι with visibility (C1 ref|C2 val) and (C3 iso|C1 ref). We cannot simply

require local compatibility of all pairs of elements from the two unions since val 6∼ `ref

(as well as several more incompatibilities). Similarly we cannot only check pairs of
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elements whose types match since val 6∼ `iso for the two C2 parts of the types. As we

described in section 5.2.2, we get around this problem by only considering superclasses

of the actual type of the object itself (C1 in the example). This means that for the

example shown, we require only that ref ∼` ref, which is satisfied.

α

ι : C1

(C1 ref|C2 val) (C2 iso|C1 ref)

Figure 84: An example heap (Valid).

λ ∼ λ′

χ(ι) ↓1v DS χ(ι) ↓1v DS′

χ, ι ` DSλ ∼ DS′ λ′
C-Subclass

χ, ι ` DT′ ∼ DT

χ, ι ` DT ∼ DT′
C-Comm

χ, ι ` DT ∼ DT′

χ, ι ` DT ∼ (DT′|DT′′)
C-Union1

χ, ι ` DT ∼ DT′′

χ, ι ` DT ∼ (DT′|DT′′)
C-Union2

Figure 85: Changes to compatible types.

To handle union types, we extend our definition of compatibility over declared types

as shown in figure 85. Our original rule, now called C-Subclass, is unchanged from its

previous definition, however we now need a few additional rules to handle the presence

of unions:

• The first rule we introduce is the C-Comm rule to allow for commutativity. This

allows us to avoid duplicating rules to handle unions (and later on, intersections

as well) for each side of the relation where a single rule will suffice.

• We then add the two rules C-Union1 and C-Union2 to actually handle union

types. We simply require that some element of the union is compatible with

the entire other type, which when combined with the other three rules allows us

to check all possible pairings of the inner types and capabilities in the case of

comparing two unions for compatibility, such as the example seen in figure 84.
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6.3 Aliasing and Unaliasing

+DT =

{
DS (+λ) iff DT = DSλ

(+DT′|+DT′′) iff DT = (DT′|DT′′)

Figure 86: Aliasing.

−DT =

{
DS (−λ) iff DT = DSλ

(−DT′|−DT′′) iff DT = (DT′|DT′′)

Figure 87: Unaliasing.

New definitions for the aliasing and unaliasing operations, shown in figures 86 and 87,

are natural extensions of the original definitions (see sections 3.5 and 3.6). If the declared

type being operated on is simply a type identifier and capability, we simply take the

alias or unalias of the capability as required, however if a union type is present then we

must recursively apply the operator to the two component types of the union, creating

a new union of the newly aliased or unaliased parts.

6.4 Sendable Types

Sendable(DT) =

{
λ ∈ {iso, val, tag} iff DT = DSλ

Sendable(DT′) ∧ Sendable(DT′′) iff DT = (DT′|DT′′)

Figure 88: Sendable types.

Similarly to aliasing and unaliasing, we now extend the definition of types that can be

sent to other actors. The resulting definition is shown in figure 88 and is once-again

a natural extension of its initial definition for PonyG (see section 3.7): a union type is

sendable if and only if both of its component types are also sendable.

6.5 Recovery

R(DT) =

{
DS (R(λ)) iff DT = DSλ

(R(DT′)|R(DT′′)) iff DT = (DT′|DT′′)

Figure 89: Recovery.

Extending our definition of recovery (original definition: section 3.9) to handle union

types is as expected, shown in figure 89: the recovery of a union simply gives back a

union of the recovered component types. This is perfectly safe since we still allow only a

single value to be recovered despite the type itself involving multiple component types.
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6.6 Safe-to-Write

λ / DT =

{
λ / κ iff DT = DSκ

λ / DT′ ∧ λ / DT′′ iff DT = (DT′|DT′′)

Figure 90: Safe-to-write.

Safe-to-write also needs to be extended to handle fields with union types. The resulting

definition is shown in figure 90 and is structured in a similar way to determining whether

a type is sendable: unions of types may be written to a field if and only if both members

of the union could be written into the field. We ignore the actual type of the members

in this operator and instead deal only with their capabilities, so the fact that we are

unpacking the union into its component types (which may not be a subtype of the actual

field type) is not an issue here.

6.7 Subtyping

DT ≤ DT′′ DT′′ ≤ DT′

DT ≤ DT′
S-Trans

λ ≤ λ′

DSλ ≤ DSλ′
S-Cap

DS v DS′

DSλ ≤ DS′ λ
S-Subclass

DT ≤ DT′

DT ≤ (DT′|DT′′)
S-Union11

DT ≤ DT′′

DT ≤ (DT′|DT′′)
S-Union12

DT ≤ DT′′ DT′ ≤ DT′′

(DT|DT′) ≤ DT′′
S-Union2

Figure 91: Changes to subtyping of declared types.

As well as compatibility and the other operators, we also need to introduce a number of

new subtyping rules to ensure that properties like commutativity and associativity hold

between pairs of union types. The following new rules augment the subtyping relation,

as shown in figure 91:

• The two rules S-Union11 and S-Union12 allow for any declared type to be a

subtyping of a union if it is a subtype of either of the members of the union type.

This is unsurprisingly similar to the definition of compatibility, where we required

simply that only one member of the union had to be compatible and the other

could be absolutely anything.

• Finally, the S-Union2 rule allows a subtype to be treated as any declared type if

both members of the union are themselves subtypes. Note how the combination

of the three rules gives us commutativity and associativity of union types under

subtyping without explicitly defining them.
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6.8 Viewpoint Adaptation

λ . DT =

{
DS (λ . κ) iff DT = DSκ

(λ . DT′|λ . DT′′) iff DT = (DT′|DT′′)

DT . DT′ =

{
λ . DT′ iff DT = DSκ

(DT′′ . DT′|DT′′′ . DT′) iff DT = (DT′′|DT′′′)

Figure 92: Non-extracting viewpoint adaptation.

λ . DT =

{
DS (λ .κ) iff DT = DSκ

(λ . DT′|λ . DT′′) iff DT = (DT′|DT′′)

DT . DT′ =

{
λ . DT′ iff DT = DSκ

(DT′′ . DT′|DT′′′ . DT′) iff DT = (DT′′|DT′′′)

Figure 93: Extracting viewpoint adaptation.

The next operator for us to define is viewpoint adaptation (originally defined in sec-

tion 3.11). We split the definition of viewpoint adaptation on declared types into two

halves. One half recursively splits the left type of the operator DT I DT′ until a type

identifier and capability is reached. We then have the form λ I DT′ and again repeat-

edly examine the type until an identifier and capability are reached. We then apply the

operator to all pairs of capabilities before reconstructing any unions we originally had.

One potential concern is the explosion in number of unions present in a type since the

number of simple types and capabilities in the resulting union is the product of the num-

ber of simple types in the two input declared types multiplied together. For example,

consider that (C1 iso|C2 ref) . (C3 iso|C4 box) = ((C3 iso|C4 tag)|(C3 iso|C4 box)).

In many situations however we will be able to significantly simplify such types

through subtyping, such as the above case where ((C3 iso|C4 tag)|(C3 iso|C4 box)) ≤
((C3 iso|C4 tag)|C4 box) ≤ (C3 iso|C4 tag).

6.9 Well-Formedness

In section 5.5 we adapted our definition of well-formed visibility to handle declared

types rather than working in terms of pure capabilities. When combined with the fact

that extending PonyG with unions once again does not introduce any new types that

can exist at runtime, this means that we do not need to extend our definitions of well-

formed visibility and well-formed heaps at all. The definitions as previously provided

simply work as expected with the new definitions for compatibility and subtyping, as

well as the extended definitions of aliasing, unaliasing, sendable, recovery and viewpoint-

adaptation.
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6.10 Removal of null

The addition of unions provides us with an additional interesting opportunity: we can

now remove the special constant null from the language entirely in order to more closely

match the Pony language itself (which does not have a null value), as we can now

simulate it by introducing some class None and replacing all possibly-null occurrences

of types with the union of the type itself and None. The Null and Except execution

rules, as well as the typing rule T-Null, may then be removed from the model entirely.

Some kind of constant would still be required for the initial content of class and actor

fields, so an additional well-formedness definition would be required to ensure that fields

cannot be accessed before they have been written to (such a check is already performed

by the Pony compiler). For this reason we choose not to pursue this opportunity and

instead continue to focus on other extensions to our model.
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7 Extending with Tuples

Our next extension to the PonyG language is the addition of tuples, also known as

product types. As with unions we restrict ourselves to simply discussing pairs of elements

rather than any length of tuples as the Pony language supports, but once again this is

merely a trivial limitation intended to simplify reading of the model.

Unlike our previous extensions, in this case we do in fact require an extension of the

operational semantics as tuples can exist as runtime values for our choice of implementa-

tion. This also means that our definitions of well-formed visibility and well-formed heaps

will require updating, however as we will see this is mostly a straightforward extension

to the existing rules.

In addition to constructing and using tuples, the Pony compiler supports multiple

assignment of the form (x1, x2) = e which in order to avoid cluttering the operational

semantics we avoid discussing here.

7.1 Implementation Strategies

There are a number of potential methods for implementing tuples, the first and most

obvious way being to continue to extend the model in a similar fashion to that done

for other extensions so far. This method obviously accounts for all possible use cases

but involves a non-trivial amount of work (as any extension to the model does). With

the aim of reducing the complexity of the model, we therefore first briefly consider two

alternate implementations.

• The first alternate way of representing tuples is to consider them to be encoded

using a normal class with two fields, 1 and 2, however problems with this scheme

start to occur when considering how this would interact with capabilities. In order

to ensure that accessing elements of the tuple maintains the intended capability,

the tuple itself must have capability ref, however this prohibits ever being able

to send tuples, even if both elements themselves are sendable.

• The second scheme is simply to separate all uses of tuples into a pair of uses (e.g. an

assignment to a tuple turns into a pair of assignments, a tuple function argument

turns into two arguments etc...). This accurately represents the capabilities of

the tuple class but does not handle the interaction of union types and tuples in

an obvious way (e.g. how to represent an object of type ((A, B)|C)]), and this

complexity would only grow further with the addition of intersection types and

generics.

Unfortunately as neither of these alternatives work in this instance and so we resort

to modelling tuples as usual, after first extending visibility to include the declared type,

as mentioned previously.
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7.2 Syntax

DT ∈ DeclType ::= DSλ | (DT|DT) | (DT, DT)

e ∈ Expr ::= · · · | (e, e)

E[·] ∈ ExprHole ::= · · · | (E[·], e) | (t, E[·])

Figure 94: Changes to syntax.

f, 1, 2 ∈ FieldID

Figure 95: Changes to identifiers.

We extend the syntax in figure 94 with a new declared type for tuples, as well as a

tuple constructor expression and corresponding expression holes. We do not create new

syntax for describing accessing or overwriting fields of the tuple, instead simply saying

that the terms 1 and 2 are valid field identifiers for the first and second members of

the tuple respectively.

Although we had previously said that tuples may exist at runtime, we do not add

anything further to our definition of runtime type identifiers RS. This is due to the fact

that we have chosen to implement tuples not as a normal object with fields but as its

own special object. There is also no good choice of runtime type identifier for a tuple,

as its type is entirely dependent on that of its members.

7.3 Operational Semantics

χ ∈ Heap = Addr → (Actor ∪Object ∪Tuple)

σ ∈ Stack = ActorAddr · Frame

ϕ ∈ Frame = MethID × (LocalID → Value)× ExprHole

LocalID = SourceID ∪ TempID

v ∈ Value = Addr ∪ {null}
ι ∈ Addr = ActorAddr ∪ObjectAddr ∪TupleAddr

α ∈ ActorAddr

ω ∈ ObjectAddr

τ ∈ TupleAddr

Actor = ActorID × (FieldID → Value)×Message × Stack × Expr
Object = ClassID × (FieldID → Value)

Tuple = Value ×Value

µ ∈ Message = MethodID ×Value

Figure 96: Changes to runtime entities.

We extend our definitions of runtime entities, shown in figure 96, to include entries for

handling tuples. Unlike actors or objects we do not need an identifier to tell us the type
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of the class as the type of a tuple is defined entirely by the types of its members. This

combined with the fact that we have a fixed number of fields, so we choose to represent

a tuple object as a simple pair of values.

We use the symbol τ to refer to the address of a tuple, and hence may obtain its

fields from a heap χ through χ(τ) ↓1 and χ(τ) ↓2 for the first and second elements of

the tuple respectively.

ϕ′′[t 7→ v, t′ 7→ v′] = ϕ

τ 6∈ χ χ′ = χ[τ 7→ (v, v′)]

t′′ 6∈ ϕ′′ ϕ′ = ϕ′′[t′′ 7→ τ ]

χ, σ · ϕ, (t, t′) χ′, σ · ϕ′, t′′
Ttor

ϕ′′[t 7→ τ ] = ϕ

t′ 6∈ ϕ′′ ϕ′ = ϕ′′[t′ 7→ χ(τ) ↓1]
χ, σ · ϕ, t. 1 χ, σ · ϕ′, t′

Tup1

ϕ′′[t 7→ τ ] = ϕ

t′ 6∈ ϕ′′ ϕ′ = ϕ′′[t′ 7→ χ(τ) ↓2]
χ, σ · ϕ, t. 2 χ, σ · ϕ′, t′

Tup2

Figure 97: New execution rules.

With these rules in place, we now proceed to extend the execution rules of the

operational semantics to handle the extension, shown in figure 97. These rules are as

follows:

• The Ttor rule handles construction of a tuple from two temporaries. We lookup

the value of the two temporaries and create a new temporary which simply points

to the pair of these, returning this new temporary.

• The rules Tup1 and Tup2 handle accessing the first and second fields of the tuple

respectively. They simply lookup the object in the heap, indexing to find the

appropriate value.

7.4 Compatibility

λ ∼ λ′

χ(ι) ↓1v DS χ(ι) ↓1v DS′

χ, ι ` DSλ ∼ DS′ λ′
C-Subclass

χ, ι ` DT′ ∼ DT

χ, ι ` DT ∼ DT′
C-Comm

χ, ι ` DT ∼ DT′

χ, ι ` DT ∼ (DT′|DT′′)
C-Union1

χ, ι ` DT ∼ DT′′

χ, ι ` DT ∼ (DT′|DT′′)
C-Union2

χ, χ(τ) ↓1 ` DT ∼ DT′′

χ, χ(τ) ↓2 ` DT′ ∼ DT′′′

χ, τ ` (DT, DT′) ∼ (DT′′, DT′′′)
C-Tuple

Figure 98: Changes to compatible types.
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Unlike when we defined compatibility on unions (section 6.2), tuples can only ever be

compatible with other tuples. We therefore define our new compatibility rule, C-Tuple,

such that a tuple is compatible with another tuple if and only if the elements of the two

tuples are pairwise compatible with each other in the context of their actual values.

7.5 Aliasing, Unaliasing and Sendable Types

+DT =


DS (+λ) iff DT = DSλ

(+DT′|+DT′′) iff DT = (DT′|DT′′)

(+DT′,+DT′′) iff DT = (DT′, DT′′)

Figure 99: Aliasing.

−DT =


DS (−λ) iff DT = DSλ

(−DT′|−DT′′) iff DT = (DT′|DT′′)

(−DT′,−DT′′) iff DT = (DT′, DT′′)

Figure 100: Unaliasing.

Sendable(DT) =


λ ∈ {iso, val, tag} iff DT = DSλ

Sendable(DT′) ∧ Sendable(DT′′) iff DT = (DT′|DT′′)

Sendable(DT′) ∧ Sendable(DT′′) iff DT = (DT′, DT′′)

Figure 101: Sendable types.

As we had when extending with union types, additions to the definitions of aliasing

(figure 99), unaliasing (figure 100) and which types are sendable (figure 101) follow as

expected:

• Applying aliasing or unaliasing to a tuple of types simply distributes the operator

over the pair, as we had for unions.

• A tuple of types is sendable if and only if both of its component types are sendable.

7.6 Recovery

The next operator to be extended with tuples is that of recovery, introduced in sec-

tion 3.9. One may think that this is a rather simple extension to the operator, along the

same lines of aliasing, unaliasing and sendable types presented previously, however note

that by definition of recovery we may only recover a single value else we risk breaking

the guarantees of the recover block. If we were allowed to recover two values we could

potentially recover the same object, such as through two ref aliases in a tuple, into two

iso aliases. This could then be exploited in order to cause a data-race.

This did in fact turn out to be an issue in the Pony language itself, as the below

code illustrates:

1 class C1

2

3 actor Main

4 new create (env: Env) =>

5 let x: (C1 ref, C1 val) = recover
6 var a : C1 ref = C1
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7 var b = a

8 (consume a, consume b)

9 end

Since Pony’s type system is slightly different from that presented here in PonyG ,

after constructing the variable a we must make a second alias and then consume both

to construct the tuple to be returned. Most importantly, the Pony language allows

us to recover a tuple of type (C1 ref, C1 ref) into a temporary of type equivalent to

(C1 iso−, C1 iso−), which after subtyping allows us to get (C1 ref, C1 val). We can

happily keep one of these aliases around to be modified while the other one could be

sent to another actor as an immutable val, giving rise to a data-race.

R(DT) =


DS (R(λ)) iff DT = DSλ

(R(DT′)|R(DT′′)) iff DT = (DT′|DT′′)

(DT′, DT′′) iff DT = (DT′, DT′′)

Figure 102: Recovery.

One possible solution to this is to disallow recovery on tuples entirely in PonyG ,

however we can do marginally better than that by observing that recovery is perfectly

safe if it does not promote the capability of the object (making it no different from

a normal block of code). The solution we adopt, shown in figure 102 is to permit

recovery on tuples but simply not recover the component types of the tuple. This gives

us the added benefit of being able to nest tuples within union types and still recover the

type of the other component of the union (for example, R((C1 ref|(C1 ref, C1 ref))) =

(C1 iso−|(C1 ref, C1 ref)))

7.7 Safe-to-Write

λ / DT =


λ / κ iff DT = DSκ

λ / DT′ ∧ λ / DT′′ iff DT = (DT′|DT′′)

λ / DT′ ∧ λ / DT′′ iff DT = (DT′, DT′′)

Figure 103: Safe-to-write.

Our definition of safe-to-write also needs extending from that presented for union types

in section 6.6. We say that a tuple type is safe-to-write into an object of some capability

if and only if the two component types of the tuple would be safe-to-write. Note once

again that we do not care about the mismatch between the component types of the tuple

and that of the field, since we are simply inspecting the capabilities of the types.
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7.8 Subtyping

DT ≤ DT′′ DT′′ ≤ DT′

DT ≤ DT′
S-Trans

λ ≤ λ′

DSλ ≤ DSλ′
S-Cap

DS v DS′

DSλ ≤ DS′ λ
S-Subclass

DT ≤ DT′

DT ≤ (DT′|DT′′)
S-Union11

DT ≤ DT′′

DT ≤ (DT′|DT′′)
S-Union12

DT ≤ DT′′ DT′ ≤ DT′′

(DT|DT′) ≤ DT′′
S-Union2

DT ≤ DT′′ DT′ ≤ DT′′′

(DT, DT′) ≤ (DT′′, DT′′′)
S-Tuple

Figure 104: Changes to subtyping of declared types.

Subtyping on tuples is defined in figure 104 as yet another addition to the rules we have

accumulated thus far. These are significantly simpler than unions since they cannot be

introduced or eliminated under subtyping: a tuple can only be a subtype of another

tuple, we simply require that both members of the tuple are pairwise subtypes of the

members of the other tuple.

7.9 Viewpoint Adaptation

λ . DT =


DS (λ . κ) iff DT = DSκ

(λ . DT′|λ . DT′′) iff DT = (DT′|DT′′)

(λ . DT′,λ . DT′′) iff DT = (DT′, DT′′)

DT . DT′ =

{
λ . DT′ iff DT = DSκ

(DT′′ . DT′|DT′′′ . DT′) iff DT = (DT′′|DT′′′)

Figure 105: Non-extracting viewpoint adaptation.

λ . DT =


DS (λ .κ) iff DT = DSκ

(λ . DT′|λ . DT′′) iff DT = (DT′|DT′′)

(λ . DT′,λ . DT′′) iff DT = (DT′, DT′′)

DT . DT′ =

{
λ . DT′ iff DT = DSκ

(DT′′ . DT′|DT′′′ . DT′) iff DT = (DT′′|DT′′′)

Figure 106: Extracting viewpoint adaptation.

We define the two viewpoint adaptation operators in figures 105 and 106 as an extension

to that provided for unions. Of particular interest is the fact that while the right side of

105



the operator is distributed in the case of tuples, the left side may not be a tuple at all.

This is due to the fact that tuples are implemented as a separate runtime entity from

that of objects and actors, including special rules for accessing members of the tuple.

Since traditional field access does not apply to tuples we need not attempt to consider

what such a definition should be.

7.10 Type Rules

Γ ` e : DT Γ ` e′ : DT′

Γ ` (e, e′) : (DT, DT′)
T-Ttor

Γ ` e : (DT, DT′)

Γ ` e. 1 : DT
T-Tup1

Γ ` e : (DT, DT′)

Γ ` e. 2 : DT′
T-Tup2

Figure 107: Additions to expression typing.

As with the operational semantics, we need an additional three rules to support typing

of PonyG programs extended with tuples:

• The T-Ttor rule handles typing of tuple constructors. We avoid needing to use

the aliasing judgement in this case since we can guarantee that the overall ex-

pression will only ever contain at most one unaliased expression (since assignment

would alias both elements and (e, e′). 1 would leave us with a single unaliased

expression).

• Accessing either element of the tuple through e. 1 or e. 2 simply has the type of

that element of the tuple, as expected.

7.11 Visibility

χ(α) ↓1= A

∆, χ, α ` α : A ref, (0, this)
V-This

χ(α, (i · z)) = ι

∆(α, i, z) = DT

∆, χ, α ` ι : DT, (i, z)
V-Read

z 6= ta

χ(α, (i · z)) = ι

∆(α, i, z) = DT

∆, χ, α ` ι : −DT, (i, z)−
V-Write

∆, χ, ι ` ι′′ : DT, pg
χ(ι′′, f) = ι′

F(χ(ι′′) ↓1, f) = DT′

∆, χ, ι ` ι′ : DT I DT′, pg · fI
V-Field

∆, χ, ι ` τ : (DT, DT′), pg

χ(τ) ↓1= ι′

∆, χ, ι ` ι′ : DT, pg · 1.
V-Tup1

∆, χ, ι ` τ : (DT, DT′), pg

χ(τ) ↓2= ι′

∆, χ, ι ` ι′ : DT′, pg · 2.
V-Tup2

Figure 108: Changes to visibility.
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Our definition of visibility needs a minor extension to deal with being able to read from

tuples due to the lack of viewpoint adaptation. We define the two new rules V-Tup1

and V-Tup2 to handle reading elements of a tuple: a path through to the nth field of a

tuple is simply seen as the the corresponding element of the type with which the tuple

itself is seen.

Well-formed visibility does not need any further changes beyond these simple changes

to visibility itself and the additions to compatibility described earlier. Well-formedness

should be preserved in this case since we only permit reading from tuples or performing

a destructive read on an entire tuple. In many cases this is equivalent to using a pair of

variables to represent each element of the tuple and merely gains us convenience rather

than permitting more programs.

7.12 Well-Formed Heaps

• ∆ ` χ� iff ∀ι ∈ dom(χ) . χ ` ι� and ∀α ∈ χ .∆, χ ` α� and WFV (∆, χ) and

WFT (χ)

• χ ` ι� iff ∀f∈ Fs(χ(ι) ↓1) . χ, χ(ι, f) ` F(χ(ι) ↓1, f)�

• ∆, χ ` α� iff χ(α) = ( , , µ̄, α · ϕ, e) and ∀i .∆, χ, α, ϕ ` i� and ∀j .∆, χ, α, µ ` j�

• ∆, χ, α, ϕ ` i� iff given ϕi = (n, , E[·]) and Md(ϕi, χ) = (DT, x : DT′, DT′′) and

∆(α, i) = Γ then

1. Γ(this) = DT and Γ(xj) = DT′j

2. ∀z ∈ ϕi . χ, ϕi(z) ` Γ(z)�

3. If i = 1 then ϕi(this) = α

4. If i< |ϕ|, given ta /∈ Γ and Γ′′ = Γ[ta 7→ Md(ϕi+1, χ) ↓3]
then Γ′′ `S E[t] : DT′′

5. If i = |ϕ| then Γ `S e : DT′′ and E[·] = ·

• ∆, χ, α, µ ` i� iff given µi = (b, v) and vj = ι and Md(χ(α) ↓1, b) = ( , x : DT, )

and ∆(α,−i) = Γ then

1. χ, ι ` DTj�

2. Γ(xj) = DTj

• χ, ι ` DT� iff

1. If ι 6= τ then χ(ι) ↓1= RS and ∃λ such that RSλ ≤ DT

2. If ι = τ then DT = (DT′, DT′′) and χ, χ(τ) ↓1 ` DT′�
and χ, χ(τ) ↓2 ` DT′′�

Figure 109: Changes to well-formed heaps.
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The final definition that we must amend for our extension of PonyG with tuples is that

of well-formed heaps. There are two problematic judgements in the existing definition

which must be fixed in order for tuples to function correctly:

• The definition of a well-formed object in the heap, χ ` ι�, requires that every field

of the object or actor has a well-formed type with respect to its runtime type,

however tuples have no notion of a set of fields (Fs) since they cannot know the

type of their arguments.

• The definition of a well-formed declared type given a heap and object, χ, ι ` DT�,
requires that the runtime type of the object (χ(ι) ↓1) with some capability is a

subtype of the type expected statically (DT), however tuples have no notion of

their runtime type, since their type depends on that of their arguments.

In order to fix both of these problems, we amend the definition of χ, ι ` DT� to

now check whether the address being inspected is that of a tuple or not. If we are not

a tuple then we proceed as normal, else we require that both the declared type being

checked against was also a tuple, and that the runtime elements of the tuple (χ(τ) ↓1
and χ(τ) ↓2) are well-formed with respect to the corresponding elements of the declared

type tuple.

This also conveniently fixes the problem posed by the first bullet point, and with

that our extension of tuples entirely, since nested tuples are transitively checked by our

modified judgement.
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8 Extending with Intersection Types

For our final extension we consider the addition of intersection types to our existing

model PonyG . Similar to unions and inheritance, we once again do not need to worry

about operational semantics, visibility or well-formed heaps as these are handled natu-

rally by our existing definitions.

One major concern for us in this case is that the addition of intersection types

can make subsumption unsafe. Consider a case where a temporary of type C1 iso−.

If we simply allow arbitrary subtypes we could end up with a value of the form

(C1 ref& C1 val) which is fundamentally unsafe (the val allows it to be sent to other ac-

tors while the ref allows local modification to occur simultaneously, causing a data-race

to occur). For this reason we must augment our definitions to support a well-formedness

definition preventing these types from being created. This is discussed further in sec-

tion 8.8.

8.1 Syntax

DT ∈ DeclType ::= DSλ | (DT|DT) | (DT, DT) | (DT& DT)

Figure 110: Changes to syntax.

The syntax of intersection types is denoted by an ampersand between a pair of declared

types and enclosed in brackets, following the same style as union types and tuples. As

with unions, this is the only required change since we simply use declared types in all

situations.

8.2 Compatibility

λ ∼ λ′

χ(ι) ↓1v DS χ(ι) ↓1v DS′

χ, ι ` DSλ ∼ DS′ λ′
C-Subclass

χ, ι ` DT′ ∼ DT

χ, ι ` DT ∼ DT′
C-Comm

χ, ι ` DT ∼ DT′

χ, ι ` DT ∼ (DT′|DT′′)
C-Union1

χ, ι ` DT ∼ DT′′

χ, ι ` DT ∼ (DT′|DT′′)
C-Union2

χ, χ(τ) ↓1 ` DT ∼ DT′′

χ, χ(τ) ↓2 ` DT′ ∼ DT′′′

χ, τ ` (DT, DT′) ∼ (DT′′, DT′′′)
C-Tuple

χ, ι ` DT ∼ DT′

χ, ι ` DT ∼ DT′′

χ, ι ` DT ∼ (DT′ & DT′′)
C-Inter

Figure 111: Changes to compatible types.

We extend our definition of compatibility to handle intersection types in figure 111.

This definition is once again unsurprising: an intersection type is only compatible with
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another type if both members of the intersection are compatible with the other type.

One important property lacking from our compatibility rule for intersection types is that

we do not enforce that such an intersection type is safe to exist, however note that we

would still need to provide such a definition later on to handle the case where we have

no other paths to compare for compatibility against.

α

ι

(C1 ref& C1 val)

Figure 112: An example heap (Invalid).

Consider the example heap shown in figure 112, we have no other paths to the

object ι and so the heap is considered well-formed, despite containing an obviously

unsafe intersection type that could be exploited to cause a data-race. For this reason

we instead choose to delay adding such a constraint until section 8.8.

8.3 Aliasing, Unaliasing and Sendable Types

+DT =


DS (+λ) iff DT = DSλ

(+DT′|+DT′′) iff DT = (DT′|DT′′)

(+DT′,+DT′′) iff DT = (DT′, DT′′)

(+DT′ &+DT′′) iff DT = (DT′ & DT′′)

Figure 113: Aliasing.

−DT =


DS (−λ) iff DT = DSλ

(−DT′|−DT′′) iff DT = (DT′|DT′′)

(−DT′,−DT′′) iff DT = (DT′, DT′′)

(−DT′ &−DT′′) iff DT = (DT′ & DT′′)

Figure 114: Unaliasing.

Sendable(DT) =


λ ∈ {iso, val, tag} iff DT = DSλ

Sendable(DT′) ∧ Sendable(DT′′) iff DT = (DT′|DT′′)

Sendable(DT′) ∧ Sendable(DT′′) iff DT = (DT′, DT′′)

Sendable(DT′) ∧ Sendable(DT′′) iff DT = (DT′ & DT′′)

Figure 115: Sendable types.

We extend the definitions of aliasing, unaliasing and sendable types in figures 113

to 115. These are reasonably straightforward definitions as we do not need to ensure

the given definitions maintain safeness of any intersection types. This is due to the fact

that we are able to show that both aliasing and unaliasing preserve safeness as defined

later. (see section 8.8.2 for lemmas).
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8.4 Recovery

R(DT) =


DS (R(λ)) iff DT = DSλ

(R(DT′)|R(DT′′)) iff DT = (DT′|DT′′)

(DT′, DT′′) iff DT = (DT′, DT′′)

(R(DT′)&R(DT′′)) iff DT = (DT′ & DT′′)

Figure 116: Recovery.

Unlike our interesting case with recovery of tuples in section 7.6, recovery of intersection

types is much more simple. We do not have to worry about a case where multiple objects

could be returned like we did with tuples since while an intersection type may have

multiple components, we are ultimately only returning a single alias. Our definition in

figure 116 proceeds as expected: we unpack the components of the intersection type

before constructing a new intersection out of the two recovered components.

Similarly to section 8.3 we do not check that our recovered types are well-formed,

since in order for them to be assigned to a variable they must first go through the

aliasing and subsumption type rules, at which point we will enforce that such a type is

safe (see section 8.9).

8.5 Safe-to-Write

λ / DT =


λ / κ iff DT = DSκ

λ / DT′ ∧ λ / DT′′ iff DT = (DT′|DT′′)

λ / DT′ ∧ λ / DT′′ iff DT = (DT′, DT′′)

λ / DT′ ∧ λ / DT′′ iff DT = (DT′ & DT′′)

Figure 117: Safe-to-write.

Our definition of safe-to-write is extended for intersection types as described in fig-

ure 117. We say that an intersection type is safe-to-write if and only if both members

of the intersection are safe-to-write into the object.

As an intersection type can behave through subtyping as either of its component

types, one may expect that it would be sufficient to allow just a single member to be

safe, however recall that the typing rule for assignment to a field makes use of the aliased

typing judgement (`A, see section 3.12) which permits subtyping (allowing just a single

member of the intersection to be used if compatible with the field type and safe-to-write

is satisfied) and hence this only needs apply when we are writing to a field of an actual

intersection type, in which case it must be safe for both members of the intersection to

be written as we have here.
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8.6 Subtyping

DT ≤ DT′′ DT′′ ≤ DT′

DT ≤ DT′
S-Trans

λ ≤ λ′

DSλ ≤ DSλ′
S-Cap

DS v DS′

DSλ ≤ DS′ λ
S-Subclass

DT ≤ DT′

DT ≤ (DT′|DT′′)
S-Union11

DT ≤ DT′′

DT ≤ (DT′|DT′′)
S-Union12

DT ≤ DT′′ DT′ ≤ DT′′

(DT|DT′) ≤ DT′′
S-Union2

DT ≤ DT′ DT ≤ DT′′

DT ≤ (DT′ & DT′′)
S-Inter1

DT ≤ DT′′

(DT& DT′) ≤ DT′′
S-Inter21

DT′ ≤ DT′′

(DT& DT′) ≤ DT′′
S-Inter22

DT ≤ DT′′ DT′ ≤ DT′′′

(DT, DT′) ≤ (DT′′, DT′′′)
S-Tuple

Figure 118: Changes to subtyping of declared types.

We extend subtyping in figure 118 with three additional rules in a similar fashion to

that done for union types:

• Rule S-Inter1 expresses that a declared type DT is a subtype of an intersection

type if DT is a subtype of both members of the intersection.

• The remaining two rules, S-Inter21 and S-Inter22, say that an intersection

type is a subtype of some declared type DT′′ if we can find some element of the

intersection that is a subtype of DT′′.

8.7 Viewpoint Adaptation

λ . DT =


DS (λ . κ) iff DT = DSκ

(λ . DT′|λ . DT′′) iff DT = (DT′|DT′′)

(λ . DT′,λ . DT′′) iff DT = (DT′, DT′′)

(λ . DT′ &λ . DT′′) iff DT = (DT′ & DT′′)

DT . DT′ =


λ . DT′ iff DT = DSκ

(DT′′ . DT′|DT′′′ . DT′) iff DT = (DT′′|DT′′′)

(DT′′ . DT′ & DT′′′ . DT′) iff DT = (DT′′ & DT′′′)

Figure 119: Non-extracting viewpoint adaptation.
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λ . DT =


DS (λ .κ) iff DT = DSκ

(λ . DT′|λ . DT′′) iff DT = (DT′|DT′′)

(λ . DT′,λ . DT′′) iff DT = (DT′, DT′′)

(λ . DT′ &λ . DT′′) iff DT = (DT′ & DT′′)

DT . DT′ =


λ . DT′ iff DT = DSκ

(DT′′ . DT′|DT′′′ . DT′) iff DT = (DT′′|DT′′′)

(DT′′ . DT′ & DT′′′ . DT′) iff DT = (DT′′ & DT′′′)

Figure 120: Extracting viewpoint adaptation.

The two viewpoint adaptation operators are extended to handle intersection types in

figures 119 and 120. As with a number of the operators explored thus far, we do

this by unpacking the intersection and applying the operator to each component type,

reassembling them into the resulting intersection type in a similar manner to that done

for unions and tuples.

8.8 Well-Formed Types

In order to express which types are valid to be declared, we introduce the notion of a

well-formed type, denoted by ` DT�. Once we have a definition of what types may exist,

we can then move on to actually integrating it into the type rules and well-formedness

definitions as needed in sections 8.9 and 8.10 respectively.

Before defining this however, we must first construct a new notion of compatibility

capable of checking declared types statically rather than for a given heap and object.

The requirement for a brand new form of compatibility is necessitated by the fact that

our existing forms of compatibility on declared types have the form χ, ι ` DT ∼ DT′,

i.e. they depend on the heap and object being checked, which is impossible to know

statically.

8.8.1 Static Compatibility

We define a new compatibility relation called static compatibility, denoted by ∼s, to

indicate whether a combination of capabilities could potentially cause a data-race to

occur given only static information (as opposed to the dynamic information given by

χ, ι ` DT ∼ DT′, which depends on the heap and object being considered).

λ ∼s λ
CS-Refl

λ ∼` λ′

λ ∼s λ′
CS-Local

Figure 121: Static compatibility on capabilities.

We begin by defining our new relation on simple capabilities, as shown in figure 121.

We begin by stating that any pair of locally compatible capabilities must also be safe
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by definition, giving us the rule CS-Local. We then augment this with one further

observation: an intersection with a pair of capabilities which are the same must also be

safe, since there cannot be a situation where one is mutable and the other is sendable to

the other actor without first being consumed by a destructive read. We therefore define

a further rule CS-Refl that permits two of the same capability.

λ ∼s λ′

DSλ ∼s DS′ λ′
CS-Lambda

DT′ ∼s DT
DT ∼s DT′

CS-Comm

DT ∼s DT′

DT ∼s (DT′|DT′′)
CS-Union1

DT ∼s DT′′

DT ∼s (DT′|DT′′)
CS-Union2

DT ∼s DT′′

DT′ ∼s DT′′′

(DT, DT′) ∼s (DT′′, DT′′′)
CS-Tuple

DT ∼s DT′

DT ∼s DT′′

DT′ ∼s DT′′

DT ∼s (DT′ & DT′′)
CS-Inter

Figure 122: Static compatibility.

We now move on to describe static compatibility on declared types. We define a

number of rules, shown in figure 122:

• CS-Lambda simply delegates to static compatibility on capabilities as described

earlier. In this case (unlike the two compatibilities on declared types we have

previously considered) we do not care about attempting to check whether the two

type identifiers are related, as any combination is sufficiently safe in this case.

• The four rules for handling commutativity, unions and tuples should come as no

surprise by now, so we omit explaining them again.

• CS-Inter is a slightly more interesting case compared to our standard definition of

compatibility. Unlike our previous definitions, we now require that the members of

the intersection are themselves statically compatible with each other. This ensures

that in addition to checking that any top-level intersection type is safe, we also

check any nested intersections.

8.8.2 Properties of Static Compatibility

To avoid explicitly requiring that the resulting of aliasing and unaliasing operations are

well formed, we now show that static compatibility within an expression is preserved on

aliasing and unaliasing.

Lemma S1. ∀λ, λ′ . if λ ∼s λ′ then +λ ∼s +λ′

Aliasing preserves static compatibility, proved using Prolog.

(see appendix D, lemma alias preserves static compat)
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Lemma S2. ∀λ, λ′ . if λ ∼s λ′ then −λ ∼s −λ′

Unaliasing preserves static compatibility, proved using Prolog.

(see appendix D, lemma unalias preserves static compat)

8.8.3 Well-Formed Types

` DSλ�
WFT-Simple

` DT�
` (DT|DT′)�

WFT-Union1
` DT′�

` (DT|DT′)�
WFT-Union2

` DT� ` DT′�
` (DT, DT′)�

WFT-Tuple
DT ∼s DT′

` (DT& DT′)�
WFT-Inter

Figure 123: Well-formed types.

Our judgement for determining whether a type is safe to appear in the program, ` DT�,
is defined in figure 123. The interesting cases here are as follows:

• All simple type identifiers and capabilities are safe to appear in a PonyG program,

regardless of the type or capability in question.

• A union type may appear as long as at least one member of the union is safe. This

is quite a weak restriction, allowing unsafe intersection types to appear on one side

of the union so long as the other side is safe. In practice a stronger condition may

be required if pattern matching or some way of extracting the ”real” type of the

union is supported (such as match expressions in the Pony language itself).

• Tuples are safe as long as each member of the tuple is itself safe.

• Finally, an intersection type is safe if the two elements of the intersection are

statically compatible with each other.

8.9 Type Rules

Γ ` e : DT′ DT′ ≤ DT ` DT �
Γ `S e : DT

T-Subsume

Figure 124: New expression typing rules.

The type rules need just a single adjustment in order to work with intersection types and

our new well-formed type judgement. Thanks to the subformula property described in

section 3.12 we can avoid having to augment multiple rules to check well-formed types,

since all assignments and function calls in the type rules, as well as checks in other well-

formedness definitions like well-formed heap and well-formed programs (see appendix C)
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use either the aliasing or subsumption judgements (`A and `S respectively). Since the

aliasing type rule invokes T-Subsume as well, it is sufficient to solely modify this rule,

checking that the resulting type after applying subtyping is well-formed. The resulting

change is shown in figure 124.

8.10 Well-Formed Heaps

• ∆ ` χ� iff ∀ι ∈ dom(χ) . χ ` ι� and ∀α ∈ χ .∆, χ ` α� and WFV (∆, χ) and

WFT (χ)

• χ ` ι� iff ∀f∈ Fs(χ(ι) ↓1) . χ, χ(ι, f) ` F(χ(ι) ↓1, f)�

• ∆, χ ` α� iff χ(α) = ( , , µ̄, α · ϕ, e) and ∀i .∆, χ, α, ϕ ` i� and ∀j .∆, χ, α, µ ` j�

• ∆, χ, α, ϕ ` i� iff given ϕi = (n, , E[·]) and Md(ϕi, χ) = (DT, x : DT′, DT′′) and

∆(α, i) = Γ then

1. Γ(this) = DT and Γ(xj) = DT′j

2. ∀z ∈ ϕi . χ, ϕi(z) ` Γ(z)�

3. If i = 1 then ϕi(this) = α

4. If i< |ϕ|, given ta /∈ Γ and Γ′′ = Γ[ta 7→ Md(ϕi+1, χ) ↓3]
then Γ′′ `S E[t] : DT′′

5. If i = |ϕ| then Γ `S e : DT′′ and E[·] = ·

• ∆, χ, α, µ ` i� iff given µi = (b, v) and vj = ι and Md(χ(α) ↓1, b) = ( , x : DT, )

and ∆(α,−i) = Γ then

1. χ, ι ` DTj�

2. Γ(xj) = DTj

• χ, ι ` DT� iff ` DT� and either

1. If ι 6= τ then χ(ι) ↓1= RS and ∃λ such that RSλ ≤ DT, or

2. If ι = τ then DT = (DT′, DT′′) and χ, χ(τ) ↓1 ` DT′�
and χ, χ(τ) ↓2 ` DT′′�

Figure 125: Changes to well-formed heaps.

Finally we must extend our definition of well-formed heaps to ensure that all variables

and fields in the program have well-formed types. We do this by extending our definition

of a well-formed type for a particular heap and address (χ, ι ` DT�) with an additional

requirement that the type DT must itself be well-formed. This is a simple addition but

proves sufficient for our purposes here, completing our extensions of the PonyG language.
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9 Evaluation and Conclusions

9.1 Contribution

In this report we have presented a formal model for a subset of the Pony language,

PonyG . Our work expands on PonyS as presented by [4] by simplifying a number

of areas of the model, gaining expressive power in others as well as exploring various

extensions to the basic model not originally covered:

• We revised the definition of capabilities and in section 3.3.1 introduced a new term

λ to encapsulate both a basic capability κ and an optional ephemeral modifier φ

to give us a total of eight capabilities rather than the six presented by the original

paper.

• Using these new temporaries we showed it was possible to revise the definition

of subtyping in section 3.10 from that originally presented, most importantly to

ensure that iso ≤ trn did not hold. This enabled us to show a number of nice-

to-have lemmas that did not originally hold.

• In section 3.11 we introduced two novel viewpoint adaptation operators, . and . ,

to replace the single original viewpoint adaptation operator presented in PonyS as

.. To ensure our definition of the operators were correct, we also presented a

number of requirements for each operator that they must adhere to in order to

be well-formed. Lastly we proved that our definitions did indeed adhere to these

requirements by exhaustively checking our definitions with Prolog.

• We expanded the original definition of the typing rules with the ability to perform

full subsumption in most cases (namely in cases where the aliasing judgement `A
is used) in section 3.12.

• The concept of active and passive temporaries was presented in section 3.13 as

a way of reasoning about partially executed programs that did not break well-

formedness guarantees (most importantly, well-formed visibility), and we presented

a version of the operational semantics highlighting how the revised temporaries

would apply.

• In section 3.15 we presented a significantly simplified definition of well-formed

visibility using the new temporaries. Our new definition has just a few cases which

are readily extensible to handle new extensions to the model simply by extending

the definitions of compatibility and the two viewpoint adaptation operators.

• Preservation of well-formed visibility was then proven in section 4.3 after showing

a large number of useful lemmas with the aid of Prolog to exhaustively check for

counterexamples in section 4.2.

• We extended our basic model PonyG with a number of extensions in order to show

the ease with which new functionality can be added. We examined the addition

of inheritance (section 5) as well as unions (section 6), tuples (section 7) and
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intersection types (section 8), and argued that our definitions of well-formedness

are readily extended to handle these cases.

• Finally we identified and provided solutions for two problematic cases where data-

races could be introduced into the program while being accepted by the type

system of the compiler. One of these was fixed during the course of the work while

the other has been acknowledged as a issue but has not yet been resolved at the

time of writing this report.

9.2 Evaluation against PonyS

Due to Pony’s novel type system, there are unfortunately not many appropriate models

to compare this work against besides that on which it is based. We feel that the pre-

sentation of PonyG presents a much more natural view of the language both in terms of

principled design of operators such as viewpoint adaptation and in terms of providing

easy to express well-formedness conditions such as well-formed visibility.

We have been able to make the core language more permissive through novel concepts

such as the two viewpoint adaptation operators, in the process removing less intuitive

features of the PonyS such as the original meaning of I, which we have not discussed.

Time constraints had a large part to play in the lack of work on proving proper-

ties about recovery (notably the absence of proof for preservation of well-formedness)

and lack of extension with generics, but we believe that PonyG provides a substantial

improvement over its predecessor, PonyS , and was designed in such a way that should

make it easy for the model to be picked up by future work.

9.3 Challenges

There were a number of important challenges that were responsible for disposing of a

large amount of time taken by this project, which we briefly discuss here:

• Simply getting up and running with a language such as Pony, with its completely

novel type system, took a lot longer than expected and caused initial explorations

of extending the model to fail in retrospectively obvious ways and taking time

away from the main body of the project.

• Finding a nice model for well-formed visibility (see section 3.15, especially the

section on comparison to PonyS , for more information) took a lot longer than

expected and went through several iterations before settling on the chosen design.

This was a necessary step however as the definition given in PonyS was unsuitable

for extending with complex type combinations like those presented here. There is

further room for improvement here, especially with regard to visibility involving

temporaries.

• Proving preservation of well-formedness also took a lot longer than expected, pri-

marily due to the attempt at presenting the proof in a strict and formal fashion

which ended up exposing a lot of unforeseen cases which needed to be handled.
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Recovery was also not considered at an early enough stage, which meant that the

decision was eventually made to omit it from the proof entirely.

9.4 Further Work

There are many ways this work could be further expanded upon:

• One potential avenue for work is the expansion of the proof of preservation of well-

formedness to include the extensions presented. In this report we were only able

to give a formal proof of preservation of well-formed visibility for the basic model,

and even then had to restrict ourselves to only the most interesting of execution

rules, however we argued that that a proof for the model with extensions should

be viable along the same lines as that already presented. This is due to the fact

that the extension of the well-formedness definition itself is reasonably straight-

forward in relative complexity and the lemmas used for proving preservation in

the original model should continue to hold after being expanded to include entire

declared types.

• The model of capabilities presented for PonyG have subtle but important differ-

ences from PonyS that enables a large number of the improvements presented here.

Another possibility for further work is therefore to augment the existing compiler

with the changes presented here.

• Conversely, as we have previously mentioned the Pony language compiler con-

tains a large number of language features that are not currently modelled in either

PonyS or in PonyG . The most notable absence from PonyG is generics, which is

used in a large portion of Pony’s standard library and is currently largely undoc-

umented. Now that an appropriate extensible framework is in place, the work of

providing a formal model for generics and other language features not covered by

this report should prove significantly more tractable.

• A formal model provides a unique opportunity to see if potential language features

(such as the original focus of this report, Materials and Shapes seen in Greenman

et al. [8], or the concept of Self Types such as those by Bruce et al. [1]) would work

in the context of the language and whether they provide any additional expressive

power or reduction in complexity.

• One final potential area to be explored is that of mechanised proofs. It has not

been explored whether it would be straightforward to prove properties presented

here under the strict requirements of proof automation languages such as Coq,

Agda or Ivy[16].

9.5 Closing Thoughts

In this work we set out to model a larger subset of the Pony language, including generics,

and simplify the model where possible. While our goal has not been reached we can

still take comfort from the fact that the model is vastly simpler and more extensible
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than where it was when we started. We also have a much more principled design for

a number of elements, reducing the amount of magic in the given definitions as well as

having a consistent story: building up from compatibility through viewpoint adaptation

to visibility. This hopefully means the job of bringing people up to speed with the new

model will be significantly easier in future, and the model itself will be easier to extend

and improve further.
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A Lookup Rules

P = NT ST CT AT

class C F K M I ∈ CT

P(C) = F K M ε I

C ∈ P

P = NT ST CT AT

actor A F K M B I ∈ AT

P(A) = F K M B I

A ∈ P

P = NT ST CT AT

trait N MS BS I ∈ NT

P(N) = MS BS I

N ∈ P

P = NT ST CT AT

interface S MS BS I ∈ ST

P(S) = MS BS I

S ∈ P

P(DS) = F K M B I

Fs(DS) = {f | var f : DT ∈ F}
P(DS) = F K M B I var f : DT ∈ F

F(DS, f) = DT

P(C) = F K M B I (new k(x : DT)⇒ e) ∈ K

Md(C, k) = (C ref, x : DT, C ref)

P(A) = F K M B I (new k(x : DT)⇒ e) ∈ K

Md(A, k) = (A ref, x : DT, A tag)

P(RS) = F K M B I (new k(x : DT)⇒ e) ∈ K

Mr(RS, k) = (x, e)

P(DS) = F K M B I (funκ m(x : DT) : DT′ ⇒ e) ∈ M

Mr(DS, m) = (x, e)

P(A) = F K M B I (be b(x : DT)⇒ e) ∈ B

Mr(A, b) = (x, e)

P(DS) = F K M B I

Is(DS) = I

P(DS) = MS BS I

Is(DS) = I

P(DS) = F K M B I

BS = {BS | ∃e . BS⇒ e ∈ B}
Bs(DS) = BS

P(DS) = MS BS I

Bs(DS) = BS ∪ Bs(I)

P(DS) = F K M B I

MS = {MS | ∃e . MS⇒ e ∈ M}
Ms(DS) = MS

P(DS) = MS BS I

Ms(DS) = MS ∪ Ms(I)

(funκ m(x : DT) : DT′) ∈Ms(DS)

Md(DS, m) = (DSκ, x : DT, DT′)

(be b(x : DT)) ∈ Bs(DS)

Md(DS, b) = (DS ref, x : DT, DS tag)

Figure 126: Lookup functions.
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Md(DS, c) = (DT, x : DT, DT′)

Md(DSλ, c) = (DT, x : DT, DT′)

Md(DT1, c) = (DT3, x : DT′, DT7)

Md(DT2, c) = (DT4, x : DT′′, DT8)

DTi = (DT′i & DT
′′
i)

Md((DT1|DT2), c) = ((DT3|DT4), x : DT, (DT7|DT8))

F(DS, f) = DT

F(DSλ, f) = DT

F(DT, f) = DT′′ F(DT′, f) = DT′′′

F((DT|DT′), f) = (DT′′|DT′′′)

Figure 127: More Lookup functions.
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B Auxiliary Definitions

Γ ∈ Env = LocalID → DeclType

∆ ∈ GlobalEnv = (ActorAddr , Integer)→ Env

Figure 128: Global environments.

• ϕ(x) = ϕ ↓2 (x) ↓1

• ϕ[x 7→ v] = (ϕ ↓1, ϕ ↓2 [x 7→ v], ϕ ↓3)

• χ(ι, f) = χ(ι) ↓2 (f)

• χ[ω, f 7→ v] = χ[ω 7→ (χ(ω) ↓1, χ(ω) ↓2 [f 7→ v]]

• χ[α, f 7→ v] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2 [f 7→ v], χ(α) ↓3, χ(α) ↓4, χ(α) ↓5)]

• χ[α 7→ (σ, e)] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2, χ(α) ↓3, σ, e]

• χ[α 7→ µ] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2, µ, χ(α) ↓4, χ(α) ↓5]

Figure 129: Auxiliary definitions.

• z ∈ ϕ iff z ∈ dom(ϕ ↓2)

• α ∈ χ iff α ∈ dom(χ)

• ∆ ` α ∈ χ iff α ∈ dom(χ)

• ∆ ` ι ∈ χ iff ∃ι′ such that ∆ ` ι′ ∈ χ and ∆, χ, ι′ ` ι :

• Md(ϕ, χ) =Md(χ(ϕ(this) ↓1, ϕ ↓1)

Figure 130: Auxiliary well-formedness definitions.

• χ(α, (i, z) · f) = χ(ϕi(z), f) where χ(α) ↓4= α · ϕ

• χ(α, (−i, xj) · f) = χ(vj , f) where χ(α) ↓3= µ and µi = ( , v)

Figure 131: Lookup functions for paths.
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C Well-Formed Programs

P = NT ST CT AT

∀CT ∈ CT. ` CT � ∀AT ∈ AT. ` AT�
` P�

WF-Program

P(DS) = F K M B I

∀var f : DSλ ∈ F. ` DS � ∀K ∈ K.DS ` K�
∀M ∈ M.DS ` M � ∀B ∈ B.DS ` B�
∀MS ∈Ms(I)∃e . MS⇒ e ∈ M

∀BS ∈ Bs(I)∃e . BS⇒ e ∈ B

` DS�
WF-Def

[this 7→ C ref, x 7→ DT] ` e : C ref

C ` new k(x : DT)⇒ e�
WF-Ctor

[this 7→ Sκ, x 7→ DT] `S e : DT′

DS ` funκ m(x : DT) : DT′ ⇒ e�
WF-Sync

Sendable(DTi)

[this 7→ A ref, x 7→ DT] ` e : DT′

A ` new k(x : DT)⇒ e�
WF-Ator

Sendable(DTi)

[this 7→ A ref, x 7→ DT] ` e : DT′

A ` be b(x : DT)⇒ e�
WF-Async

Figure 132: Well-formed programs.
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D Prolog Code

D.1 Basic Definitions

1 % Define the six basic capabilities (κ, see section 3.3)

2 capability_kappa(K) :- member(K, [iso, trn, ref, val, box, tag]).

3

4 % Extended capabilities with ephemerals (λ, see section 3.3.1)

5 capability_lambda(K) :-

6 member(K, [’iso-’, ’trn-’]); capability_kappa(K).

7

8 % sendable capabilities (see section 3.7)

9 sendable(K) :- member(K, [iso, val, tag]).

10

11 % immutable capabilities

12 immutable(K) :- member(K, [val, box, tag]).

13

14 % recovery (R(λ), see section 3.9)

15 recover(K, ’iso-’) :- member(K, [’iso-’, iso, ’trn-’, trn, ref]).

16 recover(K, val) :- member(K, [val, box]).

17 recover(tag, tag).

18

19 % safe to write (λ / λ′, see section 3.8)

20 safe_to_write(’iso-’, K) :- capability_lambda(K).

21 safe_to_write(iso, K) :- member(K, [’iso-’, iso, val, tag]).

22 safe_to_write(’trn-’, K) :- capability_lambda(K).

23 safe_to_write(trn, K) :- member(K, [’iso-’, iso, ’trn-’,

24 trn, val, tag]).

25 safe_to_write(ref, K) :- capability_lambda(K).

26

27 % local compatibility (λ ∼` λ
′, see section 3.4.1)

28 compat_l(’iso-’, tag).

29 compat_l(iso, tag).

30 compat_l(’trn-’, K) :- member(K, [box, tag]).

31 compat_l(trn, K) :- member(K, [box, tag]).

32 compat_l(ref, K) :- member(K, [ref, box, tag]).

33 compat_l(val, K) :- member(K, [val, box, tag]).

34 compat_l(box, K) :- member(K, [’trn-’, trn, ref, val, box, tag]).

35 compat_l(tag, K) :- capability_lambda(K).

36

37 % global compatibility (λ ∼g λ
′, see section 3.4.2)

38 compat_g(K, tag) :- member(K, [’iso-’, ’trn-’, iso, trn, ref]).

39 compat_g(val, K) :- member(K, [val, box, tag]).

40 compat_g(box, K) :- member(K, [val, box, tag]).

41 compat_g(tag, K) :- capability_lambda(K).

42

43 % static compatibility (λ ∼s λ
′, see section 8.8.1)

44 compat_s(K, K) :- capability_lambda(K).

45 compat_s(K1, K2) :- compat_l(K1, K2), \+(K1 = K2).

46
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47 % subtyping of capabilities (λ ≤ λ′, see section 3.10)
48 % we explicitly list out direct subtypes, then declare the

49 % actual relation in terms of this, reflexivity and transitivity

50 % to avoid prolog getting stuck in the first recursive step of

51 % transitivity. Finally we use setof to avoid duplicate solutions

52 % (since there are multiple paths to prove that e.g. iso- is a

53 % subtype of tag (iso-, iso, tag vs iso-, trn-, trn, box, tag)

54 subtype_direct(’iso-’, ’trn-’).

55 subtype_direct(’iso-’, iso).

56 subtype_direct(’trn-’, trn).

57 subtype_direct(’trn-’, ref).

58 subtype_direct(’trn-’, val).

59 subtype_direct(iso, tag).

60 subtype_direct(trn, box).

61 subtype_direct(ref, box).

62 subtype_direct(val, box).

63 subtype_direct(box, tag).

64 subtype_closure(K, K) :- capability_lambda(K).

65 subtype_closure(K1, K3) :-

66 capability_lambda(K2), subtype_direct(K1, K2),

67 subtype_closure(K2, K3).

68 subtype(K1, K3) :-

69 setof((Ka,Kc), subtype_closure(Ka, Kc), Res),

70 member((K1, K3), Res).

71

72 % aliasing of capabilities (+λ, see section 3.5)

73 alias(’iso-’, iso).

74 alias(iso, tag).

75 alias(’trn-’, trn).

76 alias(trn, box).

77 alias(K, K) :- member(K, [ref, val, box, tag]).

78

79 % unaliasing of capabilities (−λ, see section 3.6)
80 unalias(iso, ’iso-’).

81 unalias(trn, ’trn-’).

82 unalias(K, K) :- capability_lambda(K), not(K = iso; K = trn).

83

84 % non-extracting viewpoint adaptation (λ . κ, see section 3.11.2)

85 viewpoint_adaptation(’iso-’, iso, ’iso-’).

86 viewpoint_adaptation(’iso-’, trn, ’iso-’).

87 viewpoint_adaptation(’iso-’, ref, ’iso-’).

88 viewpoint_adaptation(’iso-’, val, val).

89 viewpoint_adaptation(’iso-’, box, val).

90 viewpoint_adaptation(’iso-’, tag, tag).

91 viewpoint_adaptation(iso, iso, iso).

92 viewpoint_adaptation(iso, trn, iso).

93 viewpoint_adaptation(iso, ref, iso).

94 viewpoint_adaptation(iso, val, val).

95 viewpoint_adaptation(iso, box, tag).

96 viewpoint_adaptation(iso, tag, tag).
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97 viewpoint_adaptation(’trn-’, iso, ’iso-’).

98 viewpoint_adaptation(’trn-’, trn, ’trn-’).

99 viewpoint_adaptation(’trn-’, ref, ’trn-’).

100 viewpoint_adaptation(’trn-’, val, val).

101 viewpoint_adaptation(’trn-’, box, val).

102 viewpoint_adaptation(’trn-’, tag, tag).

103 viewpoint_adaptation(trn, iso, iso).

104 viewpoint_adaptation(trn, trn, trn).

105 viewpoint_adaptation(trn, ref, trn).

106 viewpoint_adaptation(trn, val, val).

107 viewpoint_adaptation(trn, box, box).

108 viewpoint_adaptation(trn, tag, tag).

109 viewpoint_adaptation(ref, iso, iso).

110 viewpoint_adaptation(ref, trn, trn).

111 viewpoint_adaptation(ref, ref, ref).

112 viewpoint_adaptation(ref, val, val).

113 viewpoint_adaptation(ref, box, box).

114 viewpoint_adaptation(ref, tag, tag).

115 viewpoint_adaptation(val, iso, val).

116 viewpoint_adaptation(val, trn, val).

117 viewpoint_adaptation(val, ref, val).

118 viewpoint_adaptation(val, val, val).

119 viewpoint_adaptation(val, box, val).

120 viewpoint_adaptation(val, tag, tag).

121 viewpoint_adaptation(box, iso, tag).

122 viewpoint_adaptation(box, trn, box).

123 viewpoint_adaptation(box, ref, box).

124 viewpoint_adaptation(box, val, val).

125 viewpoint_adaptation(box, box, box).

126 viewpoint_adaptation(box, tag, tag).

D.2 Well-Formed Non-Extracting Viewpoint Adaptation

See section 3.11.2 for full requirement definitions.

1 check_viewpoint_adaptation_r1 :-

2 capability_lambda(K1),

3 capability_kappa(K2),

4 (immutable(K1); immutable(K2)),

5 viewpoint_adaptation(K1, K2, K1rK2),

6 \+immutable(K1rK2).

1 check_viewpoint_adaptation_r2 :-

2 capability_lambda(K1),

3 capability_kappa(K2),

4 compat_g(K2b, K2),

5 viewpoint_adaptation(K1, K2, K1rK2),

6 alias(K1rK2, K1rK2a),

7 \+compat_g(K1rK2a, K2b).

1 check_viewpoint_adaptation_r3 :-

2 capability_lambda(K1),
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3 capability_kappa(K2),

4 (compat_l(K1, K1b); (K1b=K1, capability_kappa(K1))),

5 (compat_g(K2, K2b); K2b=K2),

6 viewpoint_adaptation(K1, K2, K1rK2),

7 alias(K1rK2, K1rK2a),

8 viewpoint_adaptation(K1b, K2b, K1brK2b),

9 \+compat_l(K1rK2a, K1brK2b).

1 check_viewpoint_adaptation_r4 :-

2 capability_lambda(K1),

3 capability_kappa(K2),

4 compat_g(K1, K1b),

5 unalias(K1, K1u),

6 subtype(K1u, K1c),

7 (compat_g(K2, K2b); K2b=K2),

8 viewpoint_adaptation(K1c, K2, K1crK2),

9 alias(K1crK2, K1crK2a),

10 viewpoint_adaptation(K1b, K2b, K1brK2b),

11 \+compat_g(K1crK2a, K1brK2b).

1 check_viewpoint_adaptation_r5 :-

2 capability_lambda(K1),

3 capability_kappa(K2),

4 sendable(K1),

5 unalias(K1, K1u),

6 subtype(K1u, K1c),

7 (compat_g(K2, K2b); K2b=K2),

8 viewpoint_adaptation(K1, K2, K1rK2),

9 alias(K1rK2, K1rK2a),

10 viewpoint_adaptation(K1c, K2b, K1crK2b),

11 \+compat_g(K1rK2a, K1crK2b).

D.3 Well-Formed Extracting Viewpoint Adaptation

See section 3.11.3 for full requirement definitions.

1 check_write_viewpoint_adaptation_r1(K2, Kw) :-

2 compat_g(K2, K2b),

3 alias(Kw, Kwa),

4 \+compat_g(Kwa, K2b).

1 check_write_viewpoint_adaptation_r2(K1, K2, Kw) :-

2 (compat_l(K1, K1b); (K1b=K1, capability_kappa(K1))),

3 compat_l(K2, K2b),

4 alias(Kw, Kwa),

5 unalias(K1b, K1bu),

6 viewpoint_adaptation(K1bu, K2b, K1burK2b),

7 \+compat_l(Kwa, K1burK2b).
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D.4 Lemmas

See section 4.2 for the following lemma definitions.

1 lemma_subtyping_preserves_compatibility :- % lemma 1

2 capability_lambda(K1),

3 capability_lambda(K2),

4 subtype(K1, K1s),

5 ((compat_l(K1, K2), \+compat_l(K1s, K2));

6 (compat_g(K1, K2), \+compat_g(K1s, K2))).

1 lemma_alias_is_subtype :- % lemma 2

2 capability_lambda(K1),

3 alias(K1, K1a),

4 \+subtype(K1, K1a).

1 lemma_alias_with_ephemeral_is_subtype :- % lemma 3

2 capability_lambda(K1),

3 alias(K1, K1a),

4 unalias_or_id(K1a, K1au),

5 \+subtype(K1, K1au).

1 lemma_subtyping_preserves_aliased_compatibility :- % lemma 5

2 capability_lambda(K1),

3 capability_lambda(K2),

4 subtype(K1, K1s),

5 alias(K1, K1a),

6 alias(K1s, K1sa),

7 ((compat_l(K1a, K2), \+compat_l(K1sa, K2));

8 (compat_l(K1a, K2), \+compat_l(K1sa, K2))).

1 lemma_viewpoint_adaptation_preserves_subtyping :- % lemma 6

2 capability_lambda(K1),

3 capability_kappa(K2),

4 subtype(K1, K1s),

5 viewpoint_adaptation(K1, K2, K1rK2),

6 write_viewpoint_adaptation(K1, K2, K1wK2),

7 viewpoint_adaptation(K1s, K2, K1srK2),

8 write_viewpoint_adaptation(K1s, K2, K1swK2),

9 \+((subtype(K1rK2, K1srK2), subtype(K1wK2, K1swK2))).

1 lemma_compat_global_preserved :- % lemma 8

2 capability_lambda(K1),

3 capability_lambda(K1b),

4 capability_kappa(K2),

5 capability_kappa(K2b),

6 compat_g(K1, K1b),

7 either_viewpoint_adaptation(K1, K2, K1oK2),

8 either_viewpoint_adaptation(K1b, K2b, K1boK2b),

9 \+compat_g(K1oK2, K1boK2b).
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1 lemma_treat_paths_as_ephemeral :- % lemma 17

2 capability_lambda(K1),

3 capability_kappa(K2),

4 either_viewpoint_adaptation(K1, K2, K1oK2),

5 unalias(K1oK2, X),

6 setof(Y, K1xˆ(unalias_or_id(K1, K1x),

7 either_viewpoint_adaptation(K1x, K2, Y)), Res),

8 \+member(X, Res).

1 lemma_active_temporary_reduce_case2 :- % lemma 18

2 capability_lambda(K1),

3 capability_lambda(L1),

4 unalias(L1, L1u),

5 alias(K1, K1a),

6 alias(K1a, K1aa),

7 alias(L1, L1a),

8 alias(L1u, L1ua),

9 compat_l(K1aa, L1),

10 compat_l(K1aa, L1u),

11 compat_l(L1a, K1a),

12 compat_l(L1ua, K1a),

13 subtype(K1, K1s),

14 alias(K1s, K1sa),

15 unalias_or_id(K1sa, K1sax),

16 alias(K1sax, K1saxa),

17 \+((compat_l(K1saxa, L1), compat_l(K1saxa, L1u),

18 compat_l(L1a, K1sax), compat_l(L1ua, K1sax))).

1 lemma_local_temp_self :- % lemma 21

2 capability_kappa(K),

3 unalias_or_id(K, Kx),

4 alias(K, Ka),

5 alias(Ka, Kaa),

6 alias(Kx, Kxa),

7 \+((compat_l(Kaa, Kx), compat_l(Kxa, Ka))).

1 lemma_fld_case1 :- % lemma 22

2 capability_lambda(K1),

3 capability_lambda(K1b),

4 capability_kappa(K2),

5 unalias(K1b, K1bu),

6 alias(K1, K1a),

7 alias(K1a, K1aa),

8 alias(K1b, K1ba),

9 alias(K1bu, K1bua),

10 compat_l(K1aa, K1b),

11 compat_l(K1ba, K1a),

12 compat_l(K1aa, K1bu),

13 compat_l(K1bua, K1a),

14 viewpoint_adaptation(K1, K2, K1rK2),

15 unalias_or_id(K1b, K1bx),
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16 either_viewpoint_adaptation(K1bx, K2, K1bxoK2),

17 alias(K1rK2, K1rK2a),

18 alias(K1rK2a, K1rK2aa),

19 alias(K1bxoK2, K1bxoK2a),

20 \+((compat_l(K1rK2aa, K1bxoK2), compat_l(K1bxoK2a, K1rK2a))).

1 lemma_asnfld_assigned_value_pre :- % lemma 26

2 capability_lambda(K1),

3 capability_lambda(K1b),

4 capability_kappa(K2),

5 subtype(K2, K2s),

6 safe_to_write(K1, K2),

7 unalias(K1b, K1bu),

8 alias(K1, K1a),

9 alias(K1a, K1aa),

10 alias(K1b, K1ba),

11 alias(K1bu, K1bua),

12 compat_l(K1ba, K1a),

13 compat_l(K1bua, K1a),

14 compat_l(K1aa, K1b),

15 compat_l(K1aa, K1bu),

16 unalias_or_id(K1b, K1bx),

17 either_viewpoint_adaptation(K1bx, K2s, K1bxrK2s),

18 unalias(K2, K2u),

19 \+subtype(K2u, K1bxrK2s).

1 lemma_async_local_to_global :- % lemma 35

2 member(K1, [’iso-’, iso, val, tag]),

3 capability_lambda(K2),

4 unalias(K1, K1u),

5 alias(K1u, K1ua),

6 alias(K1, K1a),

7 alias(K2, K2a),

8 compat_l(K1a, K2),

9 compat_l(K2a, K1),

10 compat_l(K1ua, K2),

11 compat_l(K2a, K1u),

12 \+((compat_g(K1, K2), compat_g(K1u, K2))).

1 lemma_ephemeral_sendable_preserved :- % lemma 36

2 member(K1, [’iso-’, iso, val, tag]),

3 capability_kappa(K2),

4 either_viewpoint_adaptation(K1, K2, K1oK2),

5 \+member(K1oK2, [’iso-’, iso, val, tag]).

1 lemma_async_global_to_local :- % lemma 39

2 member(K1, [’iso-’, iso, val, tag]),

3 capability_lambda(K2),

4 unalias(K1, K1u),

5 alias(K1u, K1ua),

6 alias(K1, K1a),
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7 alias(K2, K2a),

8 compat_g(K1, K2),

9 compat_g(K1u, K2),

10 \+((compat_l(K1a, K2), compat_l(K2a, K1), compat_l(K1ua, K2),

compat_l(K2a, K1u))).

See section 8.8.2 for the following lemma definitions.

1 lemma_alias_preserves_static_compat :- % lemma S1

2 capability_lambda(K1),

3 capability_lambda(K2),

4 compat_s(K1, K2),

5 alias(K1, K1a),

6 alias(K2, K2a),

7 \+compat_s(K1a, K2a).

1 lemma_unalias_preserves_static_compat :- % lemma S2

2 capability_lambda(K1),

3 capability_lambda(K2),

4 compat_s(K1, K2),

5 unalias(K1, K1u),

6 unalias(K2, K2u),

7 \+compat_s(K1u, K2u).
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