
Imperial College London

Department of Computing

Formalizing Generics for Pony

Author:
Paul Liétar

Supervised by:
Prof. Sophia Drossopoulou

June 2017





Abstract

Concurrent programming is generally error-prone, as care must be taken to prevent two concurrent
tasks from interfering with each other’s data. Pony is a new language designed for concurrent
programming, based on the actor model. It’s type system is designed to statically prevent data-
races, by only allowing two actors to share data if neither can write to it.

Formal models for programming languages can help us better understand how they work, and in-
crease our confidence in the guarantees provided by the language. As Pony makes strong guarantees
about data-race freedom, having a model of the language has been an important part of its design.
However, the existing models of the language have omitted a number of important features, most
notably generics, in an attempt to reduce the complexity of these initial models.

Generics are an essential feature of modern programming languages, which allow code to be written
once and reused in various contexts, applied to different types. Generics are both a powerful
but complicated feature, which interacts closely with other parts of the language. In particular,
Pony introduces a number of novel concepts, whose interaction with generics had not been studied
carefully before.

We present PonyPL, a formalisation of the Pony language with support for generics. Our model
is based on existing formalisations of the non-generic features of the Pony language. In many
occasions, these existing models modify values’ types to reflect operations on these values. With
the introduction of generics however, types may be variables which are only replaced with non-
variable types later. We introduce symbolic type operators, which encode the modification to a
type, without requiring the final instantiation of type variables to be known. We also redefine a
number of relations on types such that they can handle the introduced type variables and symbolic
operators. We do so using partial reification, which allows us to reuse their original definitions with
little change required. Finally we define a translation from PonyPL to a non-generic version of our
model, Pony0.

While developing our model we’ve uncovered a number of bugs in the original design of generics
or in their implementation in the Pony compiler. Many of these bugs cause unsoundness, violating
the guarantees promised by the language, and could lead to data-races. We have worked closely
with the authors of the compiler, fixing some of these bugs ourselves or providing suggestions on
how they could be fixed.
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Chapter 1

Introduction

1.1 Motivation

While performance of computers has been rapidly improving since they have first been invented, the
last decade has seen the speed of single threaded execution get closer and closer to an upper limit.
Instead, modern processors have been embedding an increasing number of cores. Applications must
be designed with concurrency in mind in order to take full advantage of this newly available power.

However, concurrent applications are a lot more challenging to design than traditional applications,
as care must be taken to prevent two concurrent operations from interfering with each other’s data,
as it could lead to data-races. Many mechanisms which are widely used to prevent these data-races,
such as mutual exclusion, have proven to be suboptimal. They are very error-prone as they expose
programmers to many new risks, such as deadlocking. Others are safer and simpler to use, but
come at the cost of runtime performance penalty.

Pony is a new high performance actor based language, which provides a natural but safe way of
writing applications which are highly concurrent and can therefore take full advantage of the par-
allelism available on modern computers. However, unlike existing similar solutions, Pony enforces
data-race freedom at compile time through a system of reference capability. Each reference to an
object has an associated capability, which determines how the reference may be used. We describe
capabilities in more details in Section 2.2.6.

In order for the language to be better defined and understood, and to verify the guarantees it
makes, a first model of the Pony language was developed by [Clebsch et al., 2015]. We refer to this
model as PonySC. While it covers the core parts of the language, most importantly the reference
capability system, it omits a large number of features which were considered less essential. This
model was later improved upon by [Steed, 2016], which introduces a more principled approach to
defining the capability system, as well as expands it to cover a larger number of features from the
language. We refer to this model as PonyGS.
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However, even the improved model, PonyGS, still omits important parts of the Pony language.
Most importantly, it does not cover generics. Generics allow definitions in programs to be reused
in different contexts, even if the types in use differ. It makes for faster and cleaner development
by reducing code duplication, as well as facilitates maintenance and reasoning about programs.
Generics in Pony interact deeply with other features unique to the language. We give a more
detailed description of generics as used in Pony in Section 2.3.

1.2 Goals

The primary aim of this project is to define a new model of the Pony language, with support for
generic definitions. This model should allow a better understand how generics should integrate and
interact with the rest of the language. Defining this model requires extending the syntax of the
language to allow definitions to be parametrized by type arguments, extending the runtime seman-
tics of the language appropriately, and finally define new typing rules which determine whether a
program is well-formed in our model.

Given this model of the Pony language, we would like to verify the soundness of our approach,
ensuring that the typing rules are sufficient to uphold the data-race freedom guarantees promised
by the language.

Finally, we want to evaluate how relevant our model is to the implementation of generics in the
compiler, by comparing which programs are allowed by our model but not by the compiler, and
vice-versa.
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Chapter 2

Background

2.1 Concurrent programming

Concurrent programming allows multiple processes to execute simultaneously on a single computer.
It can be used for example in servers which need handle multiple clients. If client requests were
processed sequentially, a request which takes a long time to answer would block all other client
requests from being served. In general the different processes executing simultaneously are not
independent. They may need to share resources or data.

In the example from Figure 2.1, the MultithreadedServer class creates a new thread for each
incoming request, and executes the serve method on it. This allows multiple requests to be served
simultaneously. The CounterServer class’ implementation of the serve method simply increments
the counter field.

This simple example lacks any synchronisation between threads, which can lead to unpredictable and
inconsistent behaviour. If two request are processed simultaneously, many scenarios are possible.

One thread might execute the serve method first, incrementing the counter by one, before the
second thread executes the method and increments it again.

However, the two handling threads could both simultaneously read the same value out of the field,
increment the value by one and write the result back, where one thread would overwrite the value
written by the other. The counter would only have been increased by one even though two requests
were processed.

In languages with a looser memory model such as C or C++, data races are considered undefined
behaviour and a similar code could lead to any outcome [Boehm and Adve, 2008].
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1 class CounterServer extends MultithreadedServer {
2 int counter;
3
4 void serve(Request r) {
5 this.counter = this.counter + 1;
6 }
7 }
8
9 abstract class MultithreadedServer {

10 abstract void serve(Request r);
11
12 void onRequest(Request r) {
13 new Thread(() -> this.serve(r)).start();
14 }
15 }

Figure 2.1: Multithreaded server, vulnerable to data races

2.1.1 Mutual exclusion

The traditional approach to solving this problem relies on explicit synchronisation between pro-
cesses, through mutual exclusion locks. Only a single process may hold the lock at the time.
Attempting to acquire a held lock will block the process until the lock is released. In the following
modified example, the lock guarantees only one thread can be modifying the counter at a time.

1 class CounterServer extends MultithreadedServer {
2 Lock lock;
3 int counter;
4
5 void serve(Request r) {
6 this.lock.lock();
7 this.counter = this.counter + 1;
8 this.lock.unlock();
9 }

10 }

Figure 2.2: Synchronized server using mutual exclusion

This approach has multiple disadvantages. Firstly, in most languages synchronisation is not enforced
by the type system. The unsynchronised Java example from Figure 2.1 will compile without any
issue, despite suffering from a data race. It therefore requires the programmer to carefully protect
any access to shared data.
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Mutual exclusion also introduces a risk of deadlock, where a process A is waiting to acquire a lock
which is held by a process B, but the latter is also waiting to acquire a lock held by process A.

2.1.2 Actor-Based Programming

An alternative approach to preventing data races is to not share mutable state at all. Processes
instead communicate through asynchronous message passing. In actor-based languages [Hewitt
et al., 1973] each process, also called actor, is associated with a single message queue. While
different actors execute concurrently, each one processes incoming messages sequentially.

Some actor languages, such as Erlang [Erlang], prevent shared mutable state by making all data
immutable, or by copying any data sent to another actor, adding overhead to message passing.
Others, such as Akka [Akka] or Kilim [Kilim], do not prevent data races at all, requiring on
programmers’ to avoid these manually.

2.2 Pony

Pony [Clebsch et al., 2015] is an high-performance actor language. Through its type system, Pony
statically guarantees the absence of data races between actors,

We present in this section an overview of the language, focusing on the aspects which differentiate
it from other similar languages. This section covers similar material as found, for example, on the
Pony website. However we limit our description to features of the language relevant to our work.
Additionally, we use the same syntax as our model, which can differ with the syntax used by the
Pony language in a few places.

We intentionally avoid discussing generics here, as these are described informally in Section 2.3,
and formally throughout the rest of this report.

2.2.1 Actors

Pony actors expose asynchronous methods called behaviours, which can be invoked by other actors.
Each actor has a message queue onto which behaviour invocations are pushed. Whenever an actor
is idle, the first message is dequeued and the corresponding behaviour executed. This ensures at
most a single behaviour may be executing at a time for a given actor.

In the following example, two Client actors concurrently execute the request behaviour. The two
clients will invoke the done behaviour on the Callback when the request is complete. If the two
invocations of the done behaviour were executed concurrently, there would be a risk of a data race
when incrementing the actor’s _count member variable. However, since behaviours within a single
actor are executed sequentially, this snippet is free of data races and _count can safely modified.

12



1 actor Client
2 be request(cb: Callback) =>
3 // Do some work
4 cb.done()
5
6 actor Callback
7 var _count: U32 = 0
8 be done() =>
9 this._count = this._count + 1

10
11 actor Main
12 new create() =>
13 let cb = Callback.create()
14 let client1 = Client.create()
15 let client2 = Client.create()
16
17 client1.request(cb)
18 client2.request(cb)

Unlike system threads, Pony actors and messages are extremely cheap. It is natural to have hundreds
of thousands of actors within a program. The Pony runtime takes care of scheduling the actors
onto a multiple system threads, making full use of the machine’s capacity.

2.2.2 Classes and synchronous functions

Pony also offers a more traditional object oriented programming model. In addition to behaviours,
actors may also have functions which are executed synchronously. Pony also allows classes, which
unlike actors may only define synchronous functions. For example, the Counter class defined below
exposes two functions, add and value.

1 class Counter
2 var _count: U32 = 0
3 fun box value() : U32 =>
4 this._count
5
6 fun ref add(x: U32) =>
7 this._count = this._count + x

2.2.3 Named constructors

Pony supports named constructors. A single class or actor can define multiple constructors with
different names. When creating a new instance, the name of the constructor used must be speci-
fied. Object constructors are executed synchronously, while actor constructors are executed asyn-
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chronously. For example the class Counter below defines two constructors, create and default.
Lines 11 and 12 demonstrate how constructors are invoked.

1 class Counter
2 var _count: U32
3 new create(count: U32) =>
4 this._count = count
5 new default() =>
6 this._count = 0
7
8 actor Main
9 new create() =>

10 let counterA = Counter.create(10)
11 let counterB = Counter.default()

2.2.4 Inheritance

Pony allows the definition of abstract types. Unlike classes and actors, methods in abstract types
do not define a body. Instead the list of methods define requirements which other types must fulfill
in order to implement this type. In the example below, the abstract type Incrementable contains
a single function signature, increment. Because it provides such a function, the class Counter
implements Incrementable.

1 interface Incrementable
2 fun ref increment()
3
4 class Counter
5 var _count: U32
6 fun ref increment() =>
7 this._count = this._count + 1

When a type implements an abstract type, it creates a subtyping relation between the two types.
Because the child type provides all of the requirements of the parent, an instance of the former
can be used wherever an instance of the former is expected. In the example below, even though
the increment_twice function expects an instance of Incrementable, an instance of Counter is
provided instead on line 5. This is correct because Counter is a subtype of Incrementable. On
the other hand, because the NotIncrementable class does not provide a increment method, it is
not a subtype of Incrementable and the invocation of increment_twice on line 9 is not allowed.
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1 class NotIncrementable
2
3 actor Main
4 new create() =>
5 this.show(Counter.create(0))
6
7 // error: expected Incrementable, got NotIncrementable
8 // error: NotIncrementable is not a subtype of Incrementable
9 this.show(NotIncrementable.create())

10
11 fun increment_twice(inc: Incrementable) =>
12 inc.increment()
13 inc.increment()

Pony allows two sorts of abstract types. The first one, interfaces only require implementors to
provide the required method. As soon as a type defines all the methods of the interface it becomes
a subtype of that interface, which is a case of structural subtyping. The other sort of abstract type
in Pony, traits impose a further requirement in implementors, which need to explicitely opt-in into
implementing the trait, by listing it as a parent type. Traits thus rely on nominal subtyping.

For example below, all of A, B and C implement the HasName interface since they provide the name
function. However, only B and C implement the Named trait, as it is not in A’s parent list. Note
that interfaces can also be listed as parents, such as HasName for C, but doing so is not required.

1 trait Named
2 fun name(): String
3 interface HasName
4 fun name(): String
5
6 class A
7 fun name(): String => "A"
8 class B is Named
9 fun name(): String => "B"

10 class C is Named, HasName
11 fun name(): String => "C"

2.2.5 Variance in method signatures

As described in the previous section, in order to implement an abstract type children types must
provide all of the methods required by the parent. However, Pony allows the signature of these
methods to differ, as long as the method in the child is more general than the corresponding signaure
in the parent. In other words, any where the method in the parent type may be called, calling the
child method must be allowed.
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Consider for example the following definitions. The Controller trait requires child types to pro-
vide two methods, description and add. The first method must return a type which implements
Stringable, whereas the second method receives an argument of type Counter. The ref anno-
tatation on the argument type is required for reasons which we’ll explain in section Section 2.2.6,
and can be ignored for now.

1 interface Stringable
2 fun box string(): String
3 interface Incrementable
4 fun ref increment()
5
6 class String is Stringable
7 fun box string(): String => this
8 class Counter is Incrementable
9 fun ref increment() => ¨ ¨ ¨

10
11 trait Controller
12 fun description(): Stringable
13 fun add(counter: Counter ref)

The AddTwo class, defined below, implements the Controller by providing the two required meth-
ods. However, the types which appear in the methods’ signature differ from those appearing in the
trait. However these differences are acceptable as they make the methods more general. Indeed,
the description method below returns String, and because String implements Stringable it is
always valid to use the return type of the method as a Stringable. Similarily, the add method
accepts any instance of Increment, which includes any instance of Counter as well, making the
method more general than the one from the parent.

1 class AddTwo is Controller =>
2 fun description(): String => "AddTwo"
3
4 fun increment_twice(i: Incrementabe ref) =>
5 i.increment()
6 i.increment()

Return types are said to be covariant, whereas argument types are contravariant.

2.2.6 Capabilities

In order to guarantee data race freedom without any performance costs, Pony assigns each object
reference a capability. Capabilities describe what operations are allowed on other aliases of the
reference. This is turn determines what operations can be performed using this reference. The six
base capabilities are describe below, and summarized in Table 2.1.

Global aliases are aliases to the object from a different actor, whereas local aliases are aliases from
the same one. For example given the heap described by the graph below, the reference x from actor
α1 to to the object ι has one local alias, the reference y, and one global alias, the reference z from
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Figure 2.3: Local and Global aliases

• iso references deny read and write aliases, both globally and locally. The isolated reference is
therefore the only path to access the pointed object in the entire program, making it possible
to read and write through this reference without causing any data race.

• trn references deny read and write global aliases, but locally they only deny write aliases.
Since the current actor is the only one to reference the object, this reference can be used to
mutate the object.

• ref references deny read and write global aliases, but allow any local alias. Just like trn
references, no other actor can access this object, making it possible to mutate the object
safely.

• box references only deny global write aliases, allowing either global read aliases or local write
ones. Note that these two cases are mutually exclusive Either there exists a global read
alias, or there exists a local mutable one. However the box reference alone is not enough to
determine which situation applies. It is therefore not possible to mutate an object through a
box reference, since there could be a global alias to it. On the other hand, mutable aliases to
that object can only exist locally, making it safe to read through the box reference.

• val references deny mutable aliases both globally and locally, but allow immutable aliases
from any actor. It is therefore safe to read from such a reference, but not to write.

• Finally tag references allow any sort of alias, both globally and locally. It is thus not allowed
to neither read nor write thorugh this reference, since another actor could be mutating it.
Such a reference is therefore said to be opaque. Nevertheless, opaque references can be used
to compare the identity of objects. Additionally, sending a message to a remote actor is an
atomic operation, which can safely be performed concurrently. tag references can therefore
be used to invoke behaviours on remote actors.

Capabilities which have the same restrictions for both local and global aliases, iso, val and tag,
can be sent to other actors as arguments to behaviour invocations. The other three capabilities
cannot be used in an argument to a behaviour, as there could exist an alias from the sending actor
which should not be allowed anymore once the reference would have been sent to another actor.
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Deny global
read/write aliases

Deny global
write aliases

Allow all
global aliases

Deny local read/write aliases iso

Deny local write aliases trn val

Allow all local aliases ref box tag

Mutable Immutable Opaque

Table 2.1: Pony Capabilities, reproduced from [Clebsch et al., 2015]

2.2.7 Temporary references

Object fields and local variables form stable references. The reference can be named, and can be
used multiple times. On the other hand, temporary references do not have a name, and can only
be used once. Once used, they are destroyed and cannot be reused.

In addition to the six base capabilities, described above, Pony defines two more capabilities, iso˝

and trn˝, which are ephemeral. These have similar properties as their respective non-ephemeral
counterparts, iso and trn, but can only apply to temporary references.

• A temporary reference with capability iso˝ guarantees that no non-opaque stable reference
exist pointing to the object.

• A temporary reference with capability trn˝ guarantees that no mutable stable reference exist
pointing to the object, and no global alias exists.

2.2.8 Aliasing

α

ι

κ ùñ

α

ι

κ A(κ)

Figure 2.4: Aliasing

Aliasing happens whenever a new stable reference to an object is created from an existing one.
This occurs when assigning a reference to a field or when a reference is given as an argument to

18



a constructor or method call. The capability of the aliased reference depends on the capability of
the original one. An alias cannot deny more than the original capability. However, it may need to
deny less if the original capability requires so.

ref, val, box and tag all alias as themselves, since they are all locally compatible with the original
capability. iso references deny any read or write alias both globally and locally. The only capability
it can alias to is therefore tag. Finally, trn only allows immutable local aliases. However, since
trn is mutable and val denies such aliases, trn must alias into a box.

Finally, aliasing ephemeral references, with capabilities iso˝ or trn˝, destroys the original reference,
creating a stable one. An iso˝ reference therefore aliases as an iso, since the only non-opaque alias
has just been destroyed. Similarily, trn˝ aliases to trn, as the only mutable alias has just been
destroyed, but there may exist local immutable ones.

2.2.9 Destructive reads and unaliasing

α

ι

κ ùñ

α

ι

κ U(κ)

Figure 2.5: Unaliasing

Pony allows extracting write, which overwrite a local variable or field’s value, while returning the
old one as a temporary. This operation unaliases the reference, destroying a stable reference to
the object. Just like aliasing, the capability of the unaliased reference depends on the original
capability.

If the original capability was iso, then unaliasing has destroyed the only non-opaque stable reference
to the object. The temporary’s capability is therefore iso˝. Similarily, if the original capability
was trn, then the destroyed reference was the only mutable stable reference to the object. There
can however exist local immutable aliases to the object. The temporary’s capability is therefore
trn˝.

Finally, if the original capability was one of ref, val, box or tag, then despite destroying the stable
reference, there could exist other aliases with the same capability. Therefore the temporary has the
same capability as the original reference.
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2.2.10 Viewpoint adaptation

α

ι

ι1

κ

κ1

Vp(κ, κ1)

Figure 2.6: Viewpoint adaptation

Reading a field from an object creates a temporary whose capability depends on both the capability
of the origin, and the capability of the field. The operator which combines the two capabilities is
called viewpoint adaptation, as it determines the capability of the field as seen from the origin’s
point of view.

2.3 Generics in Pony

In this section we present an informal overview the various features introduced alongside generics in
Pony. This section serves as a motivation for choices in the syntax and semantics we will introduce
later.

Throughout this section, we will describe different versions of a class Cell, which simply holds a
reference to an object. The most basic example of this class is shown below. It contains a single
field of type A ref, a constructor which initialises the field from the constructor’s argument, and a
getter method which return the stored reference.

1 class A
2 class Cell
3 var f: A ref
4 new create(x: A ref) =>
5 this.f = consume x
6 fun ref get() : A ref =>
7 this.f

Unfortunately this class can only be used to store references of type A ref. In order to use the class
Cell with other types than A ref, we would have to define a different version of Cell for each of
these types, which would lead to significant amounts of duplicated code. Instead, we would want
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our class to be polymorphic, such that it can be used with different types.

2.3.1 Polymorphism without generics

Pony already enables a form of polymorphism through subtyping. Anywhere a reference of a certain
type is expected, a reference of a subtype may be used instead. In the following example, the Cell
class uses an Any box reference to point to an object of any type. For instance, on lines 13 and 14,
the same class is used to store references to objects of class A and B.

1 class A
2 class B
3 class Cell
4 var f: Any tag
5 new create(x: Any tag) =>
6 this.f = consume x
7
8 fun ref get() : Any tag =>
9 this.f

10
11 actor Main
12 new create() =>
13 var cellA : Cell ref = Cell.create(A.create())
14 var cellB : Cell ref = Cell.create(B.create())

This form of polymorphism is however limited, since it loses any extra information about the type
of the reference. The get function returns Any tag no matter what was the type of the reference
passed to Cell’s constructor. For example, even though the Cell constructor is called on line 4
with an argument of type A ref, we are unable to retrieve a reference of this type on line 8.

1 class A
2 actor Main
3 new create() =>
4 var cell : Cell ref = Cell.create(A.create())
5
6 // error: right side must be a subtype of left side
7 // error: Any tag is not a subtype of A ref
8 var contents : A ref = x.get()

2.3.2 Generics

Generics allow classes and methods to have type parameters, introducing a new form of polymor-
phism which preserves the identity of the original type. Once defined, type variables can be used
wherever a type is expected, such as field types or method signatures. In the following example,
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the Cell class is generic over a type parameter X.
1 class Cell[X]
2 var f: X
3 new create(x: X) =>
4 this.f = consume x
5
6 fun ref get() : X =>
7 this.f

Before a generic class can be used, it must be instantiated by passing it a type argument. For
instance, Cell[A ref] is the class Cell where all occurences of X have been replaced by A ref.
The get function therefore returns a reference of type A ref, as shown below.

1 class A
2 actor Main
3 new create() =>
4 var cell : Cell[A ref] ref = Cell[A ref].create(A.create())
5 var contents : A ref = x.get()

2.3.3 Generic Bounds

Each type parameter can have a bound associated, which restricts which types it can be instantiated
with. In the example below, the Cell class implements the string method, which provides a
description of the object. It does so by calling the string method on the contents of the cell. To
ensure this method exists on type X, a bound Stringable box is added to the type parameter, as
shown on line 3.

1 interface Stringable
2 fun box string(): String iso˝

3
4 class Cell[X: Stringable box] is Stringable
5 var f: X
6 new create(x: X) =>
7 this.f = consume x
8
9 fun box string(): String iso˝ =>

10 "Cell(" + this.f.string() + ")"

The Cell class defined above can therefore only be instantiated with types which implement the
Stringable interface. In the example below, instatiating Cell with A box, such as on line 7 is
allowed, while instantiating it with B box is not, as shown on line 10.
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1 class A is Stringable
2 fun box string(): String iso˝ => "A"
3 class B
4
5 actor Main
6 new create() =>
7 var cellA : Cell[A box] ref = Cell[A box].create(A.create())
8
9 // error: B does not implement Stringable

10 var cellB : Cell[B box] ref = Cell[B box].create(B.create())

2.3.4 Capability constraints

Unlike regular subtyping, instantiation of type variables requires the capability of the parameters to
match the capability of the bound exactly. For example the type variable and bound X: Any box
can be instantiated with A box but not with a A iso, even though iso is a subtype of box.

This enables the body of the generic class to exploit properties specific to box, such being able to
alias to itself. In the example below, if X could be instantiated with A iso the Cell[A iso] object
would hold two trn references to the same object, violating Pony’s aliasing rules.

1 class Cell[X: Any box]
2 var f1: X
3 var f2: X
4 new create(x: X) =>
5 this.f1 = x
6 this.f2 = x

There are however cases where we would want to allow more than a single capability. For instance,
the class Cell from Section 2.3.3 should allow any capability as long as it is possible to call the
string method. In addition to concrete capabilities, Pony allows capability constraints to be used
in generic bounds. Each constraint admits a set of concrete capabilities. There are five basic
constraints, as well as two ephemeral variants. They are described in Table 2.2.

The Cell class from section Section 2.3.3 can be modified to use the #read constraint in its bound,
as shown below. This constraint allows any of ref, val or box, making it possible to call the string
on line 6, while being more flexible than the X: Stringable box bound used previously.

1 interface Stringable
2 fun box string(): String iso˝

3 class Cell[X: Stringable #read] is Stringable
4 var f: X
5 fun box string(): String iso˝ =>
6 "Cell(" + this.f.string() + ")"
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Constraint Allowed capabilities Description

#any iso, trn, ref, val,
box, tag

Any capability

#read ref, val, box Capabilities which can be read from, and alias as themselves

#send iso, val, tag Capabilities which can be sent to an actor

#share val, tag Capabilities which can be sent to more than one actor

#alias ref, val, box, tag Capabilities that alias as themselves

#any˝ iso˝, trn˝, ref,
val, box, tag

Any ephemeral capability

#send˝ iso˝, val, tag Ephemeral capabilities which can be sent to an actor

Table 2.2: Capability Constraints

The choice of constraints and how they relate to concrete capabilities is not motivated by a specific
rationale, but simply captures common patterns in Pony programs. Modifying existing constraints’
definitions or adding new ones would only require small changes to our description of the language.
For example, we may want in the future to modify #read to include trn and iso, or we could add
a new constraint #write which would include ref, trn and iso.

2.3.5 Recursive bounds

Pony supports recursive bounds, also known as F-bounded polymorphism. These allow type vari-
ables to appear in their own bounds, as well as in bounds of other variables. These bounds are
useful in the definition of binary operations. Consider for example the Ordered interface below,
which defines a function less. This function compares the receiver with an object of type X.

1 interface Ordered[X]
2 fun less(other: X): Bool

Binary operations are generally applied on two objects of the same type. The recursive bound
X: Ordered[X] #read is used to express this, as shown below.

1 actor Main
2 fun minimum[X: Ordered[X] #read](a: X, b: X) =>
3 if a.less(b) then
4 consume a
5 else
6 consume b
7 end
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2.3.6 Variance of Type Parameters

In general, types in Pony are invariant with respect to their type arguments. Given two types S
and T, where S is a subtype of T, then Cell[S] is neither a subtype nor a supertype of Cell[T].

In the example below, if Cell[Any box] ref were a subtype of Cell[N box] ref, one could pass
the former as the argument to the read method. This method would be able to read the contents
as an N box, even though it could contain any subtype of Any box.

Similarily, if Cell[A box] ref were a subtype of Cell[N box] ref, one could could pass the latter
as the argument to the write method. This method writes a B box into the cell, even though from
the caller’s perspective it must contain a A box.

1 interface Any
2 trait N is Any
3 class A is N
4 class B is N
5
6 class Cell[X]
7 var f: X
8 fun ref get() : X =>
9 this.f

10 fun ref set(x: X) =>
11 this.f = consume x
12
13 actor Main
14 fun read(cell: Cell[N box] ref) : N box =>
15 cell.get()
16
17 fun write(cell: Cell[N box] ref) =>
18 cell.set(B.create())
19
20 new create() =>
21 this.read(Cell[N box].create(A.create()))
22 this.write(Cell[N box].create(A.create()))
23
24 // error: Cell[A box] is not a subtype of Cell[N box]
25 // error: Type parameters are not equal
26 this.read(Cell[A box].create(A.create()))
27
28 // error: Cell[Any box] is not a subtype of Cell[N box]
29 // error: Type parameters are not equal
30 this.write(Cell[Any box].create(A.create()))

Unfortunately, invariance of type arguments prevents uses which would otherwise be sound. For in-
stance, passing a Cell[A box] ref as the argument to the read method or passing a Cell[Any box] ref
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as the argument to the write would be sound, but neither of these are allowed, as shown on lines
26 and 30 in the example above.

However, this limitation can be worked around by defining two different interfaces, CellGet which
contains all the methods of Cell where X only appears in contravariant positions, and CellSet
which contains all the methods where X only appears in covariant position, as shown below. Thanks
to structural subtyping, Cell[S] implements CallGet[T] as long as S is a subtype of T, and it
implements CallSet[T] as long as T is a subtype of S.

1 interface CellGet[X]
2 fun ref get() : X
3 interface CellSet[X]
4 fun ref set(x: X)

We can use these two interfaces in the signatures of the read and the write methods, as shown
in the example below. This allows the two sound uses on lines 9 and 10, while still preventing the
unsound ones on lines 14 and 18.

1 actor Main
2 fun read(cell: CellGet[N box] ref) : N box =>
3 cell.get()
4
5 fun write(cell: CellSet[N box] ref) =>
6 cell.set(B.create())
7
8 new create() =>
9 this.read(Cell[A box].create(A.create()))

10 this.write(Cell[Any box].create(A.create()))
11
12 // error: Cell[Any box] does not implement CellGet[N box]
13 // error: Any box is not a subtype of N box
14 this.read(Cell[Any box].create(A.create()))
15
16 // error: Cell[A box] does not implement CellSet[N box]
17 // error: N box is not a subtype of A box
18 this.write(Cell[A box].create(A.create()))

2.3.7 Explicit viewpoint adaptation

As described before in Section 2.2.10, field access in Pony uses viewpoint adaptation to preserve
deep immutability. For example, the contents of a Cell, when accessed through a box reference,
should be immutable. This can be expressed with explicit viewpoint adaptation, such as box->X.
This notation refers to the X type as seen through a box reference.

The concrete capability depends on how the type variable is instantiated, following the usual rules
of viewpoint adaptation. For example, when instantiated with A ref, the adapted type will be
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A box. When instantiated with A val, the adapted type will be A val.

The example below demonstrates the use of explicit viewpoint adaptation in the return type of the
get function. In order to allow mutable access, the get_ref function is available, but requires the
receiver to be mutable. Since viewpoint adaptation through ref always results the original type, a
return type of X is sufficient.

1 class Cell[X: Any #any]
2 var f: X
3 new create(x: X) =>
4 this.f = consume x
5
6 fun box get() : box->X =>
7 this.f
8
9 fun ref get_ref() : X =>

10 this.f

In this example, the get and get_ref functions only differ in their receiver capability and return
type. In order to avoid such duplication, Pony allows functions to be polymorphic with respect to
their receiver capability. Such a function can be called with different receiver capability, and have
it reflected in the signature using the special viewpoint this.

In the Cell class, the get and get_ref functions can be unified into a single function which allows
any reference capability in #read, as shown below. Calling the get function on a reference of type
Cell[A ref] box will return a reference of type A box, preserving deep immutability. However,
calling the same method on a reference of type Cell[A ref] ref will return an A ref reference,
enabling mutability.

1 class Cell[X: Any #any]
2 var f: X
3 new create(x: X) =>
4 this.f = consume x
5
6 fun #read get() : this->X =>
7 this.f

Finally, the viewpoint on the left of the arrow operator can also be another type, in order to refer
to the how this type sees the type on the right-hand side of the arrow. This is illustrated below, by
defining a function get_other which calls get on another instance of Cell[X]. The capability of
the return type depends on how both X and Y are instantiated, and thus we use explicit viewpoint
adaptation to express the return type Y->X.
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1 class Cell[X: Any #any]
2 var f: X
3 new create(x: X) =>
4 this.f = consume x
5
6 fun #read get() : this->X =>
7 this.f
8
9 fun get_other[Y: Cell[X] #read](other: Y) : Y->X =>

10 other.get()

2.3.8 Explicit aliasing and unaliasing

In addition to viewpoint adaptation, types in Pony may be modified through aliasing and unaliasing.
Like viewpoint adaptation, the result of these operations, when applied to type variables, depends
on their instantiation. Pony therefore supports special syntax for referring to the result, through
the + and ´ operators, respectively for aliasing and unaliasing. The example below demonstrates
the use of each operator.

1 class Cell[X: Any #any]
2 var f: X
3 new create(x: X) =>
4 this.f = consume x
5
6 fun ref replace(x: X): X- =>
7 this.f = consume x
8
9 fun ref clone(): Cell[X+] ref =>

10 Cell[X+].create(this.f)

The replace function changes which reference is stored in the cell. Thanks to destructive field
write, the old reference is returned. This reference has the same type as the contents of the cell,
but with an alias removed. The unaliasing operator ´ is used to reflect this fact. Again, the exact
capability of the returned reference depends on how X was instantiated. For a Cell[A box], the
unaliasing operator has no impact and the function returns an A box. However, for a Cell[A iso]
the function returns an A iso˝, allowing the caller to alias it to an A iso.

The clone function creates a new cell pointing to the same object. The call to Cell.create however
creates an alias of this.f, which is reflected in the return type Cell[X+], by the + operator.
Calling clone on a Cell[A ref] ref would return a reference of the same type, aliasing leaves
the type unmodified. However, calling the same method on a Cell[A iso] ref would return a
Cell[A tag] ref, since a iso reference aliases into a tag.

The clone function as described above can only be used on ref receiver. If the function had been
defined with, for example, a box receiver, then the expression this.f would have type box->X, and
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it would not be possible to call the Cell[X+] constructor with this value. Instead, we can combine
the two features, explicit viewpoint adaptation and explicit aliasing, to write a clone function
which can be called with any sort of readable receiver, as shown below.

1 class Cell[X: Any #any]
2 var f: X
3 fun #read clone(): Cell[(this->X)+] ref =>
4 Cell[(this->X)+].create(this.f)

2.3.9 Object creation

In addition to methods, traits and interfaces can define constructors which must be provided by
types which implement them. This allows constructors to be invoked on type variables bound by
such a trait or interface.

The return capability of constructors is normally implicit depending on the type being constructed.
Actor constructors return a tag reference, whereas class constructors return a ref one. Because in-
terfaces could be implemented by either, the return capability must be specified explicitely, as shown
below. Traits and interfaces with ref constructors, such as Default, can only be implemented by
classes, whereas those with only tag constructors, such as DefaultOpaque can be implemented by
both actors and classes.

1 interface Default
2 new default() : ref
3 interface DefaultOpaque
4 new default_opaque() : tag
5
6 class A is Default, DefaultOpaque
7 new default() => this
8 new default_opaque() => this
9

10 actor B is DefaultOpaque
11 new default_opaque() => this

Usually, type variables represent both a type identifier and a capability. However constructors
must return references of a specific capability, either ref or tag, no matter what capability the
type variable’s instantiation has. Pony therefore allows a special type syntax, composed of a
type variable and a capability, such as X ref. This type uses the type identifier of the variable’s
instantiation, but a fixed capability. For example below, even though the class Cell is instantiated
with A iso, the constructor call on line 4 returns a reference of type X ref. The field f has the
same type, making the assignment valid.
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1 class Cell[X: Default #any]
2 var f: X ref
3 new create() =>
4 this.f = X.default()
5
6 class A
7 actor Main
8 new create() =>
9 let cell : Cell[A iso].create()

10 let contents : A ref = cell.f

It is however possible to recover the result of the constructor call into an X iso˝, which can be
aliased as an X reference, as shown below.

1 class Cell[X: Default #any]
2 var f: X
3 new create() =>
4 this.f = recover X.default()

In general, Pony allows either concrete types, actors and classes, or abstract types, traits and in-
terfaces, to be used to instantiate generic types. The latter can be used to create heterogenous
collections. For example, given a generic class Array, the type Array[Stringable box] represents
an array which can contain objects of different types, as long as they all implement the Stringable
interface, as shown below.

1 class A is Stringable
2 fun box string(): String iso˝ => "A"
3 class B is Stringable
4 fun box string(): String iso˝ => "A"
5
6 class Array[X]
7 new create() => ¨ ¨ ¨

8 fun ref push(x: X) => ¨ ¨ ¨

9 fun box pop(): X- => ¨ ¨ ¨

10
11 actor Main
12 new create() =>
13 let array : Array[Stringable box] ref = Array[Stringable].create()
14
15 array.push(A.create())
16 array.push(B.create())
17
18 let element : Stringable box = array.pop()

However, if a type variable’s bound is constructible, that is it defines a constructor, then it can only
be instantiated by concrete types. Indeed, in the example below, if the instantiation of Cell with
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the abstract type Default ref was allowed,
1 class Cell[X: Default #any]
2 var f: X
3 new create() =>
4 this.f = recover X.default()
5
6 actor Main
7 new create() =>
8 Cell[A ref].create()
9

10 // error: abstract type Default ref does not satisfy
11 // constructible bound Default #any
12 Cell[Default ref].create()

2.4 Modelling and soundness of languages

2.4.1 Modelling Java

There have been multiple formal models describing subsets of the Java language, and proving
their soundness. [Drossopoulou et al., 1999] is one of the first such model and describes a significant
portion of the original Java language. This model included most of the language’s features, including
primitive types, classes and inheritance, method overloading and overriding. It does not however
describe any form of generics, as these were only added later to the language.

[Igarashi et al., 2001] introduced a very reduced version of the Java language, intended as a minimal
core calculus for modelling Java’s type system. Featherweight Java omits many important features
of the language, including primitive types, mutability or method overloading. It is however used as
the basis to describe Featherweight Generic Java, which is itself a subset of Generic Java. Generic
Java is a backwards compatible extension to the Java language, allowing classes and methods to be
generic [Bracha et al., 1998]. It was ultimitely used as the basis of the implementation of generics
introduced in Java 5.

While no model for GJ was presented, soundness of FGJ’s type system is described by [Igarashi
et al., 2001] and illustrates the key features of GJ. Rather than proving soundness of FGJ’s type
system from scratch, it defines a transformation from FGJ to FJ. The transformation erases type
arguments from class and methods, replacing all type variables by their bounds, as illustrated by
Figures 2.7 and 2.8.

In order for the resulting FJ program to type check propely, synthetic casts are inserted in the
transformed program. For instance, the expression new Pair<A,B>(new A(), new B()).snd is
transformed into (B)new Pair(new A(), new B()).snd. These synthetic casts are guaranteed to
succeed at runtime. This matches Java’s implemention of generics.

31



It is shown that any valid FGJ program is transformed to a valid FJ program, and that reduction
in FGJ and FJ are equivalent, thus showing soundness of FGJ’s type system [Igarashi et al., 2001].

2.4.2 Unsoundness of Java’s type system

Despite the various models and proofs of soundness for subsets of the Java language, no model
covers the entire language. Indeed, it has been recently discovered that its type system is actually
unsound [Amin and Tate, 2016].

The program reproduced in Figure 2.9 succesfully coerces an integer into a string. This program
relies on different features of the language. While these features have been specified and proven
sound in isolation, their interaction within in a single language hadn’t been fully considered.

1 class Pair<X extends Object, Y extends Object> extends Object {
2 X fst;
3 Y snd;
4 Pair(X fst, Y snd) {
5 super(); this.fst=fst; this.snd=snd;
6 }
7 <Z extends Object> Pair<Z,Y> setfst(Z newfst) {
8 return new Pair<Z,Y>(newfst, this.snd);
9 }

10 }

Figure 2.7: Pair class in FGJ, reproduced from [Igarashi et al., 2001]

32



1 class Pair extends Object {
2 Object fst;
3 Object snd;
4 Pair(Object fst, Object snd) {
5 super(); this.fst=fst; this.snd=snd;
6 }
7 Pair setfst(Object newfst) {
8 return new Pair(newfst, this.snd);
9 }

10 }

Figure 2.8: Erased pair class, reproduced from [Igarashi et al., 2001]

1 class Unsound {
2 static class Constrain <A, B extends A> {}
3 static class Bind<A> {
4 <B extends A> A upcast(Constrain <A, B> constrain , B b) {
5 return b;
6 }
7 }
8 static <T,U> U coerce(T t) {
9 Constrain <U, ? super T> constrain = null;

10 Bind<U> bind = new Bind<U>();
11 return bind.upcast(constrain , t);
12 }
13 public static void main(String[] args) {
14 String zero = Unsound.<Integer,String>coerce(0);
15 }
16 }

Figure 2.9: Unsound valid Java program, reproduced from [Amin and Tate, 2016]

In the example, the Constrain class acts as a proof that its type argument B is a subtype of A. An
instance of this type can only be created if the compiler can prove this, and conversly an instance
of this type can be used by the program as a proof of the subtyping relation.

While the features used by the program, wilcards and existential types, were shown to be sound
by [Torgersen et al., 2005] and [Cameron et al., 2008], the subsets of the language used omitted
null pointers in an attempt to simplify the models. However, in Java null inhabits any valid type,
making it possible to construct a value of type Constrain with the right type parameters, without
any need to prove any relation between the two types, as shown by the example. This value of
Constrain is then incorrectly used as a proof of the subtyping relation, allowing unrelated types
to be coerced.
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Fortunately, the program listed in Figure 2.9 reliably terminates at runtime by throwing a ClassCastException.
This is only because the JVM does not directly support generics, and they are instead implemented
in Java by erasing type information and introducing synthetic casts. The JVM still performs run-
time checks executing the synthetic casts and is able to identify this invalid case. Had Java generics
been implemented by reification, this soundness issue could have led to undefined behaviour and
potential security vulnerabilities.

This example demonstrates the importance of modelling the largest subset possible of the language.
While larger models complicates any reasoning made about them, they are necessary to make sure
all interactions between features are considered.

2.4.3 Modelling Pony

Pony makes strong guarantees about the lack of data races in valid Pony programs. This makes a
formal model for the language even more important in order for the guarantees to be trusted.

Just like Java, existing models for subset of the Pony language have been described by [Clebsch
et al., 2015] and [Steed, 2016]. The former, which we’ll refer to as PonySC, provides an initial model
of the language, with its syntax, operational semantics and typing rules. It also proves soundness
and data race freedom for valid Pony programs. It however focuses on the core components of the
language, most notably deny capabilities. The latter, which we’ll refer to as PonyGS, is based off
PonySC but presents a more principled approach in determining some of the typing rules. It also
extends the language by introducing inheritance as well as union, intersection and tuple types.

Both models however omit generics from their description of the language. As described previously,
generics have a very complex interaction with the other essential features of Pony. Adding them to
these models would be a significant step forward torwards modelling the entire language.
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Chapter 3

Syntax

In this chapter we present the syntax for PonyPL, a formal model for the Pony language with support
for generics. The model is an extension of Pony0, a model of the Pony language without support for
generics, which is described formally in Appendix A. Throughout this chapter, differences between
PonyPL and Pony0 are highlighted in grey.

3.1 Programs and definitions

PonyPL programs consist of class, actor, trait and interface definitions. The syntax for each of these
definitions is decribed in Figure 3.1.

P P Program ::= CT AT NT ST

CT P ClassDef ::= class C [ X : BT ] I [ T ] F K M

AT P ActorDef ::= actor A [ X : BT ] I [ T ] F K M B

NT P TraitDef ::= trait N [ X : BT ] I [ T ] KS MS BS

ST P InterfaceDef ::= interface S [ X : BT ] I [ T ] KS MS BS

Figure 3.1: Syntax of programs

Classes are made of fields (F), named constructors (K) and functions (M). Actors are similar to
classes, but may also contain behaviours (B).
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Traits and interfaces are used to describe the constructors and methods exposed by an object. They
are made up of stubs which only define the constructor and method signatures, without providing
an implementation. In order to implement a trait or interface, objects must provide all of the
constructors and methods of the parent type, with a compatible signature. Traits use nominal
subtyping, whereas interfaces use structural subtyping, as explained previously in Section 2.2.4.

In order to support generics, all the definitions can be parametrized with type variables (X). In the
rest of the program, the definition can only be used by instantiating it first by providing appropriate
type arguments. Each type variable has an associated bound (BT) which describes which types are
allowed as type arguments in instantiations.

Since parent types themselves may be generic, they must be instantiated when they are specified.
Note that a definition’s type arguments are unrelated to its parents’. A definition may have fewer or
more type arguments than its parents, and the parents can be instantiated with both the definition’s
own type variables or with concrete types. As such, all of the definitions below are correct.

1 trait N1
2 trait N2[X]
3 class A[X] is N1
4 class B[X] is N2[X]
5 class C[X] is N2[E ref]
6 class D is N2[E ref]
7 class E

Type variables may however not be used directly as a parent type, only as a their type arguments.
The definition below is therefore not allowed.

1 // error: type variable X cannot be used as parent type
2 class A[X] is X

Compared to Pony0, traits and interfaces in PonyPL may also contain constructor stubs (KS). These
were not needed before the introduction of generics, since methods on traits and interfaces were
always invoked through an instance of that type. In PonyPL however, constructors can be called
directly on type variables, provided they are defined in the variable’s bound.

Differences with the Pony language

The Pony language allows the bound of type variables to be omitted, in which case the bound
Any #any type is used instead, as it is a supertype for all types. For conciseness, we also omit the
bounds in some of our examples.

3.2 Items

We refer to the contents of definitions as items. Their syntax is described in Figure 3.2.
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F P Field ::= var f : T

K P Ctor ::= new k [ X : BT ]
(
x : T

)
ñ e

M P Func ::= fun ν m [ X : BT ]
(
x : T

)
: T ñ e

B P Behv ::= be b [ X : BT ]
(
x : T

)
ñ e

KS P CtorStub ::= new k[ X : BT ]
(
x : T

)
: κ

MS P FuncStub ::= fun ν m [ X : BT ]
(
x : T

)
: T

BS P BehvStub ::= be b [ X : BT ]
(
x : T

)
Figure 3.2: Syntax of items

Constructors, functions and behaviours share a common syntax. They receive arguments (x : T)
and have an associated body (e). Even though method bodies are a single expression, expressions
can be composed together using a semicolon, forming a new expression. This can be used to
define methods with many expressions which are evaluated sequentially. We describe the syntax of
expressions in detail in Section 3.5. In order to support generic constructors and methods, their
syntax is extended in PonyPL to include type arguments, following the same syntax (X : BT) used
previously in Section 3.1.

Functions have a receiver capability, which determines what capability is required to call the function
on a reference, and a return type. Invoking a behaviour can be done using any reference to the
actor, even opaque. The receiver type is therefore implicitely tag. Additionally they cannot return
a value since they are executed asynchronously.

As explained in Section 2.3.7, a method can be polymorphic over its receiver capability, allowing it
to be used on references of different capability, and have it reflected in the signature by using the
special this viewpoint. Compared to Pony0, we therefore allow methods to specify a capability
bound (ν), such as #read, rather than a concrete capability.

Since constructors create a new object rather than receive an existing one, they do not have any
receiver capability and their return type is implicitely the type they are constructing. The capability
of the return type however depends on the kind of object being creates. For classes, the return
type has capability ref, whereas it has capability tag for actors. Constructor stubs however are
contained in traits and interfaces, which can be implemented by either actors or classes.

A trait or interface with a tag constructor can be implemented by either actors or classes, since
ref is a subtype of tag and, as explained in Section 5.12, the return capability is covariant. On the
other hand, a ref constructor cannot be implemented by actors, since these only have tag ones.
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Differences with the Pony language

The Pony language places the return capability of constructor stubs between the new keyword and
the constructor name, similar to how receiver capabilities are placed, whereas we’ve placed it to
the right of the signature, where return types are usually found. The two following two constructor
stub are therefore equivalent in their respective language.

1 new ref create() // Pony
2 new create() : ref // PonyPL

We’ve found that placing the capability in the return position better reflects its purpose. The differ-
ence with receiver capabilities becomes apparent when we define method subtyping in Section 5.12,
as function receiver capabilities are contravariant but constructor return capabilities are covariant.
In other words, a ref constructor for example would be a subtype of a tag one, whereas a tag
function is a subtype of a ref one.

Because all existing constraints other than #read allow tag to be used as the receiver, they have
very little practical as a receiver capability. Therefore, the Pony language does not allow capability
constraints to be used as a receiver capability, but treats box as if they were #read. Additionally,
a box receiver capability can always be replaced by a #read one. The following two methods are
equivalent in their respective languages.

1 fun box get() : thisŹX => ¨ ¨ ¨ // Pony
2 fun #read get() : thisŹX => ¨ ¨ ¨ // PonyPL

3.3 Types

Types are used in field declarations, as method parameter and return types, and as arguments for
instantiations of generic types and methods. Their syntax is described in Figure 3.3.

T P Type ::= DS [ T ] κ | X | X κ | T + | T ´ | VP Ź T | recover T

DS P TypeID ::= A | C | N | S
RS P RuntimeTypeID ::= A | C
I P AbstractTypeID ::= N | S
κ P Cap ::= iso | trn | ref | val | box | tag | iso˝ | trn˝

VP P Viewpoint ::= κ | T | this
KT P CtorType ::= RS[ T ] | X

Figure 3.3: Syntax of types
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The main syntax for types consists of a type identifier (DS) with an associated capability (κ). Addi-
tionally, if the type identifier refers to a generic definition, then it must be instantiated with the right
number of type arguments. For example, given the definitions below, A ref and Cell[A iso] ref
and are valid types, whereas Cell ref is not.

1 class A
2 class Cell[X]
3 class Pair[X, Y]
4
5 actor Main
6 var a : A ref = ¨ ¨ ¨

7 var cell : Cell[A iso] ref = ¨ ¨ ¨

8 var pair : Pair[A iso, A iso] ref = ¨ ¨ ¨

9
10 // error: wrong number of type arguments for class A, expected 0 got 1.
11 var a' : A[A iso] ref = ¨ ¨ ¨

12
13 // error: wrong number of type arguments for class Cell, expected 1 got 0.
14 var cell' : Cell ref = ¨ ¨ ¨

15
16 // error: wrong number of type arguments for class Pair, expected 2 got 1.
17 var pair' : Pair[A iso] ref = ¨ ¨ ¨

Inside a generic definition, any type variable (X) in scope can be used wherever a type is expected.
When instantiating the definition, the type variable will be replaced with its corresponding instan-
tiation. In the following example, the field f of class Cell has type X. However, when considering
the instantiation Cell[A ref], the field has type A ref.

1 class A
2 class Cell[X]
3 var f: X

Type variables are generally used without specifying a capability, as in the example above, since
their instantiation already includes one. However, when calling a constructor on a type variable,
the reference returned by the constructor will have the type of the variable’s instantiation, but the
capability will be one of ref or tag, depending on whether an actor or a class is being constructed.
The form X κ is used to refer to these types. In example below, the constructor call on line 8 has
type X ref, even if X is instantiated with a type of a different capability. Calling make on an object
of type Factory[A tag] would return a reference of type A ref.

39



1 trait Default
2 new create() : ref
3 class A is Default
4 new create() => this
5
6 class Factory[X: Default #any]
7 fun make() : X ref =>
8 X.create()

We introduce three operators which are use to modify as type’s capability, aliasing (+), unaliasing
(´) and viewpoint adaptation (Ź). The first two are postfix operators applied to a type, while
the latter is an infix operator which accepts a viewpoint (VP) on the left and another type on the
right. These operators encode these operations symbolically. For example, (A iso)+ and A tag are
two syntactically distinct types, even though they are semantically equivalent. A fourth operator,
recover, is used to represent the type from recovering an expression. It is not meant to be used in
programs, but rather as a detail of the type system.

Viewpoints may be a capability, another type or the special viewpoint this. When a type is used
as a receiver, its type identifier is ignored and only its capability is used. However it can be used
when the type’s capability is not known yet, such as a type variable. The viewpoint this is used
in functions with polymorphic receivers, and refer to the receiver capability.

Constructor types (KT) are used as the base for constructor calls. Because traits and interfaces
cannot be constructed, constructor types can only be a runtime type (RS) or a type variable. In the
latter case, the typing rules will ensure the variable can only be instantiated with a runtime type.

The two ephemeral capabilities, iso˝ and trn˝, are recognizable by their trailing circle symbol.
These capabilities should generally only be used in return types, as it does not make sense for a
field or argument, which are stable references, to have an ephemeral type. However, enforcing this
restriction adds complexity to the model for little benefit. It is much simpler to allow any type,
ephemeral or not, to be used in any position. Since it is impossible to create a stable reference with
an ephemeral type, a method with an ephemeral argument type will be impossible to call, and a
field with such a type will be unassignable. Similarily, while ephemeral capabilities can be used as
method receiver capabilities, such method can never be called.

Differences with the Pony language

The Pony language does not define any general aliasing and unaliasing operator, nor does it define
the ephemeral capabilities iso˝ and trn˝.

Instead, both concepts are replaced by modifiers (ϕ), for aliasing (!) and unaliasing (^). While
these have similar semantics as the PonyPL operators, they can only be applied to type identifiers,
using the form DS[ T ] κ ϕ, or to type variables, using the form X ϕ, but not to any type like PonyPL

operators can be. Figure 3.4 describes the syntax of types used by the compiler, ignoring other
features which are not covered by our model.
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T P Type ::= DS[ T ] κ ϕ | X ϕ | VP Ź T
κ P Cap ::= iso | trn | ref | val | box | tag
ϕ P Mod ::= ! | ^ | ϵ

Figure 3.4: Syntax of types used by the Pony compiler (simplified)

We’ve found that the syntax used by the compiler, which only allows modifiers on certain types,
does not make it possible to represent the type of certain expressions. For example in PonyPL, the
reference created by consuming a variable of type val->(X+) has type (val->(X+))-, as shown
below on lines 3 and 4. However, in the Pony language, the type of the reference created by
consuming a variable of type val->(X!) cannot be expressed at all, as shown on lines 8 and 9.

1 // PonyPL

2 actor Main
3 fun m[X](x: val->(X+)) : (val->(X+))- =>
4 consume x
5
6 // Pony
7 actor Main
8 fun m[X](x: val->(X!)) : /* this type cannot be expressed */ =>
9 consume x

At the time of writing, the compiler represents this type by unaliasing the right hand side of
the arrow, keeping the viewpoint unchanged. For instance, the compiler would unalias the type
val->(X!) into val->X, as shown below. However, we’ve found this to be unsound.

1 // Pony
2 actor Main
3 fun m[X](x: val->(X!)) : val->X =>
4 consume x

Finally we’ve used the + and ´ symbols, borrowed from [Steed, 2016], as we’ve found them to
be more evocative than the ! and ^ symbols, since they represent respectively the addition and
removal of an alias. These symbols are not used in the Pony language as they already used as
arithmetic operators.

3.3.1 Reified and Ground Types

We also define restricted syntaxes for types, shown below in Figure 3.5. These are subsets of the
general type syntax described in Figure 3.3, and are exclusively used by our definition of the typing
rules for PonyPL in Chapter 5.
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RT P ReifiedType ::= BRT κ

BRT P BasicReifiedType ::= DS[ RT ] | X
GT P GroundType ::= BGT κ

BGT P BasicGroundType ::= DS[ GT ]

Figure 3.5: Restricted syntaxes of types

Reified types are a restricted syntax of types, and are the result of partial reification, described
in Section 5.5. All type variables appearing in a reified type must have a capability associated.
Additionally, reified types may not contain type operators, since these are reduced during reification.
Unlike general types, reified types can be decomposed into their base, a basic reified type, and a
capability. Note that the restriction is deep, type arguments which appear in a reified type must
be reified themselves.

Ground types are a further restriction of reified types, where type variables cannot appear at all.
Similarily, they can be decomposed into a basic ground type and a capability. Again, the restriction
is deep, type arguments must be ground types themselves.

3.4 Type bounds

BT P TypeBound ::= DS[ T ] ν | X | BT + | BT ´

ν P CapBound ::= κ | #any | #read | #send | #share | #alias | #any˝ | #send˝

RB P ReifiedBound ::= BRT ν

Figure 3.6: Syntax of bounds

Type bounds are used to constrain what types can be used to instantiate a type variable. Their
syntax is similar to that of types, with the addition of capability constraints, as explained in
Section 2.3.4.

Explicit viewpoint adaptation is not allowed in bounds, because capability constraints are not closed
under viewpoint adaptation. For instance, the bound box Ź N #any should allow capabilities val,
box, and tag, but there aren’t any constraints which allow exactly these three capabilities.
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Differences with the Pony language

Originally, the Pony compiler considered type arguments inside bounds as bounds themselves. In
other words, bounds had the following syntax

BT P TypeBound ::= DS[ BT ] ν | ¨ ¨ ¨

This allowed the use of capability constraints in these arguments, such as X: Cell[A #any] box.
However we’ve noticed this is almost never has the expected behaviour since bounds are in general
invariant over type parameters. This means even a type such as Cell[A iso] box would not be
allowed by this bound. Additionally, it prevents explicit viewpoint adaptation to be used within
type arguments of bounds, such as X: Cell[boxŹA #any] box.

We’ve also found that supporting such bounds makes the model more complicated by propagating
capability constraints into other parts of the type system, making it possible for an expression’s
type to have a capability constraints.

Instead, we’ve defined type arguments in bounds to be regular types. This prevents the use of
capability constraints, but these uses can be rewritten under the form X: Cell[Y], Y: A #any,
which has the expected behaviour. On the other hand, this allows the use of viewpoint adaptation
in the type arguments, such as X: Cell[boxŹY], Y: A #any.

We’ve proposed this change to the Pony language, which has been integrated in version 0.13.2 of
the compiler. When implementing this change we’ve found this form of bounds was never used
in the standard library, conforting us in the idea it had just been an oversight in the compiler’s
original implementation.

3.5 Expressions

e P Expr ::= this | null | e; e
| x | x = e
| e.f | e.f = e | recover e

| e.n [ T; T ] (e) | KT.k [ T ](e)

E⟨¨⟩P ExprHole ::= ( ¨ ) | x = E⟨¨⟩ | E⟨¨⟩; e | E⟨¨⟩.f
| e.f = E⟨¨⟩ | E⟨¨⟩.f = t | recover E⟨¨⟩
| E⟨¨⟩.n [ T; T ](t) | e.n [ T; T ] (t, E⟨¨⟩, e)

| KT.k [ T ] (t, E⟨¨⟩, e)

Figure 3.7: Syntax of expressions
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Most of the forms of expressions described in Figure 3.7 are typical of most language and should
not come as a suprise.

Assignment to local variables (x = e), and to fields (e.f = e) extract the old value, through a
extracting read, described in Section 2.2.9.

In order to support generics, in addition to the usual parameters method calls also accept a receiver
type and type arguments, which are separated by a semicolon. The former is used to determine
the receiver capability used by the method. For brevity, we omit it in examples when the method’s
receiver is not polymorphic. Constructor calls also accept type arguments.

Differences with the Pony language

The Pony language supports many more forms of expressions. These include control flow ex-
pressions, such as conditionals and loops, and arithmetic operators. While these are essential for a
general purpose language, their semantics are similar to that of other imperative languages. Adding
them to our model would make it more complicated while not adding much value.

The Pony language does not allow the receiver type to be specified. Instead it is inferrred by the
compiler from the receiver’s expression’s type. In section , we define a translation of generics into
non-generic code, which depends on the receiver type. Making the receiver type explicit allows this
translation to be independent of typing.

Null references

The Pony language does not allow the use of null references, since it is a frequent source of bugs in
programs. This requires the compiler to check that constructors initialise all of their fields before
returning. In PonyPL we avoid the extra complexity by initialising all fields to null.

Additionally, null pointers allow us to express the consume expression of the Pony language, de-
scribed in section Section 6.1, in terms of a destructive read by assigning a null pointer to the
variable, as shown below. We also use this more evocative notation in our examples.

1 class A
2 actor Main
3 fun m(x: A iso) : A iso˝ =>
4 consume x // Pony
5
6 fun n(x: A iso) : A iso˝ =>
7 x = null // PonyPL

Just like it ensures constructors must initialise all fields, the Pony compiler ensures a consumed
variable cannot be reused. Our model however does not enforce this, as it would be adding more
complexity.
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In both cases, while null pointers can be a source of bugs in user programs, they do not have
any impact on the soundness of the language. Dereferencing a null reference will simply cause the
execution to be stuck.

3.6 Identifiers

C P ClassID
A P ActorID
N P TraitID
S P InterfaceID
X P TypeVarID
f P FieldID

this, x P SourceID
t P TempID
k P CtorID
m P FuncID
b P BehvID
n P MethID = CtorID Y FuncID Y BehvID

Figure 3.8: Identifiers

We describe in Figure 3.8 the identifiers used in PonyPL. Most of these are identical to Pony0,
and were borrowed from [Steed, 2016]. The metavariable X was chosen as it establishes a parallel
between type variables and local variables.
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Chapter 4

Operational Semantics

We present in this chapter the operational semantics of PonyPL. Most of the semantics are identical
to Pony0, and have been borrowed from [Steed, 2016].

PonyPL allows constructors to be called on type variables, as shown below. This requires information
about type variables’ instantiation to be maintained at runtime, in order to determine which type
to construct. In the example below, on line 15, the Factory class is instantiated with A ref, and
the identity of the type variable is used at runtime when executing the make method, invoked from
line 17.

1 trait Default
2 new default(): ref
3
4 class Factory[X: Default #any]
5 new create() => None
6
7 fun make(): X ref =>
8 X.default()
9

10 class A is Default
11 new default() => ¨ ¨ ¨

12
13 actor Main
14 new create() =>
15 let factory : Factory[A ref] = Factory[A ref].create()
16
17 let a : A ref = factory.make()
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4.1 Runtime entities

χ P Heap = Addr Ñ (Actor Y Object)
Actor = ActorID ˆ RuntimeEnv ˆ (FieldID Ñ Value) ˆ Message ˆ Stack ˆ Expr

Object = ClassID ˆ RuntimeEnv ˆ (FieldID Ñ Value)

µ P Message = MethID ˆ RuntimeEnv ˆ Value
σ P Stack = ActorAddr ¨ Frame
φ P Frame = MethID ˆ RuntimeEnv ˆ (LocalID Ñ Value) ˆ ExprHole
∆ P RuntimeEnv = TypeVarId Ñ (TypeID ˆ RuntimeEnv)

LocalID = SourceID Y TempID
v P Value = Addr Y tnullu

ι P Addr = ActorAddr Y ObjectAddr
α P ActorAddr
ω P ObjectAddr

Figure 4.1: Runtime entities

Figure 4.1 shows the runtime entities used by PonyPL. Differences with Pony0 are highlighted in
grey.

The state of a program’s execution is represented by a heap, which maps memory addresses to
individual actors and objects. Each object or actor contains a map storing the current values of
their fields. Values can be either an address to other actors and objects, or null. Compared to
objects, actors also carry a sequence of pending messages (µ) sent by other actors, as well as a stack
(σ) composed of individual frames (φ).

Compared to Pony0, we introduce runtime environments (∆), which map type variables to the
runtime representation of how they were instantiated at the object’s creation. Each object and
actor in the heap carries the environment of its instantiation, binding each of the type variables of
the class.

Additionally, each frame in an actor’s stack contain a runtime environment, binding all the type
variables in scope. These type variables can be originating from either from type parameters of the
class definition or from type parameters of the executing method. On method calls, the environ-
ment of the object is merged with a new environment representing the method’s type arguments.
Similarily, messages to actors contain the runtime environment to be used when executing the
behaviour.

For example, given the program below, an object of type C[A ref, C[A ref, B ref]] would have
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the following runtime environment

∆ = [ X ÞÑ (A,∅), Y ÞÑ (C, [ X ÞÑ (A,∅), Y ÞÑ (B,∅) ]) ]

Invoking the method m[B] on this object would create a new frame on the currently executing actor,
with a runtime environment ∆1 = ∆ ˝ [ Z ÞÑ B ].

1 class A
2 class B
3 class C[X, Y]
4 fun m[Z]() => ¨ ¨ ¨

In order to determine the real type of a type variable from a runtime environment, we define the
resolve function described below. For type variables, it simply looks up its value in the environment.
For non-variable types, it returns the type name and the runtime environment corresponding to
the applied type parameters, by recursively using the function on the arguments.

resolve :: (CtorType Y Type) Ñ (TypeID ˆ RuntimeEnv)
resolve(X,∆) = ∆(X)

resolve
(
DS[ T ],∆

)
=

(
DS, Tp(DS) ÞÑ resolve(T,∆)

)
The definition of resolve is also extended in a straightforward way to include other type syntaxes,
by ignoring capabilities.

resolve
(
DS[ T ] κ,∆

)
= resolve

(
DS[ T ],∆

)
resolve(T +,∆) = resolve(T,∆)

resolve(T ´,∆) = resolve(T,∆)

resolve(VP Ź T,∆) = resolve(T,∆)

resolve(recover T,∆) = resolve(T,∆)

4.2 Execution

We describe in Figure 4.2 describe the operational semantics of PonyPL.

The rules Ctor and Ator must use resolve to determine the runtime type being constructed, from
the constructor type KT. resolve also returns a runtime environment for the type arguments applied
to the type. This runtime environment is stored in the constructed object.

All method calls create a new runtime environment ∆1 from the type parameters of the call, using
resolve to remove occurences of type variable in the arguments. This runtime environment is
combined with the receiver object’s runtime environment ∆, and passed to called method.

For synchronous calls (Ctor and Sync), the combined runtime environment is placed in the newly
created frame. For asynchronous calls (Ator and Async), it is placed in the message sent to the
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remote actor. Upon reception of the message, the Behave rule copies the runtime environment
from the received message into the created frame.

Other rules are identical to those of PonyGS and have been reproduced in Figure 4.3.

ι = φ(t)
RS = χ(ι) Ó1 ∆ = χ(ι) Ó2

(X , x, e) = Mr(RS, m)
∆1 = [ X ÞÑ resolve(T, φ Ó2) ]

φ2 = (m, ∆ ˝ ∆1 , [ this ÞÑ ι, x ÞÑ φ(t) ], ¨)

φ1 = (φ Ó1, φ Ó2, φ Ó3, E⟨¨⟩)

χ, σ ¨ φ, E
⟨
t.mT [ T ] (t)

⟩
⇝ χ, σ ¨ φ1 ¨ φ2, e

Sync

ω R dom(χ)

(C,∆) = resolve(KT, φ Ó2)

(X , x, e) = Mr(C, k)
∆1 = [ X ÞÑ resolve(T, φ Ó2) ]

f = Fs(C)
χ1 = χ[ω ÞÑ (C, ∆ , f ÞÑ null) ]

φ2 = (k, ∆ ˝ ∆1 , [ this ÞÑ ω, x ÞÑ φ(t) ], ¨)

φ1 = (φ Ó1, φ Ó2, φ Ó3, E⟨¨⟩)

χ, σ ¨ φ, E
⟨
KT .k [ T ] (t)

⟩
⇝ χ1, σ ¨ φ1 ¨ φ2, e

Ctor

α = φ(t)
A = χ(α) Ó1 ∆ = χ(α) Ó2

(X, x, e) = Mr(A, b)
∆1 = [ X ÞÑ resolve(T, φ Ó2) ]

µ = χ(α) Ó4 µ = (b, ∆ ˝ ∆1 , φ(t))
χ1 = χ[α ÞÑ µ ¨ µ ]

χ, σ ¨ φ, t.bT [ T ](t)⇝ χ, σ ¨ φ, t
Async

α R dom(χ)

(A,∆) = resolve(KT, φ Ó2)

(X, x, e) = Mr(A, k)
∆1 = [ X ÞÑ resolve(T, φ Ó2) ]

f = Fs(A) µ = (k, ∆ ˝ ∆ , φ(t))
χ1 = χ[α ÞÑ (A, ∆ , f ÞÑ null, µ, α, ϵ)]

t R φ φ1 = φ[t ÞÑ α]

χ, σ ¨ φ, KT .k [ T ] (t)⇝ χ1, σ ¨ φ1, t
Ator

A = χ(α) Ó1 (n, ∆ , v) ¨ µ = χ(α) Ó4

(X, x, e) = Mr(A, n)
φ = (n, ∆ , [ this ÞÑ α, x ÞÑ v, ¨ ])

χ, α, ϵ⇝ χ[α ÞÑ µ ], α ¨ φ, e
Behave

Figure 4.2: Execution
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χ, σ ¨ φ, e⇝ χ1, σ ¨ φ1, e1

χ, σ ¨ φ, E⟨e⟩⇝ χ1, σ ¨ φ1, E
⟨
e1
⟩ ExprHole

χ, χ(α) Ó4, χ(α) Ó5⇝ χ1, σ, e
χ Ñ χ1[α ÞÑ (σ, e)]

Global

χ, σ ¨ φ, t; e⇝ χ, σ ¨ φ, e
Seq

t R φ φ1 = φ[t ÞÑ φ(x)]
χ, σ ¨ φ, x⇝ χ, σ ¨ φ1, t

Local

t1 R φ
φ1 = φ[x ÞÑ φ(t), t1 ÞÑ φ(x)]
χ, σ ¨ φ, x = t⇝ χ, σ ¨ φ1, t1 AsnLocal

t1 R φ φ1 = φ[t1 ÞÑ χ(φ(t), f)]
χ, σ ¨ φ, t.f⇝ χ, σ ¨ φ1, t1 Fld

t2 R φ φ1 = φ[t2 ÞÑ χ(φ(t), f)]
χ1 = χ[φ(t), f ÞÑ φ(t1)]

χ, σ ¨ φ, t.f = t1 ⇝ χ1, σ ¨ φ1, t2 AsnFld

t R φ φ1 = φ[t ÞÑ null]
χ, σ ¨ φ, null⇝ χ, σ ¨ φ1, t

Null
φ(t) = null

χ, σ ¨ φ, t.f⇝ χ, σ ¨ φ, t
χ, σ ¨ φ, t.f = t1,⇝ χ, σ ¨ φ, t
χ, σ ¨ φ, t.n(t)⇝ χ, σ ¨ φ, t

Except

E⟨¨⟩= φ Ó3 t1 R φ
φ2 = (φ Ó1, φ Ó2 [t1 ÞÑ φ1(t)], ¨)

χ, σ ¨ φ ¨ φ1, t⇝ χ, σ ¨ φ2, E
⟨
t1
⟩ Return

χ, α ¨ σ, t⇝ χ, α, ϵ
ReturnBe

Figure 4.3: Execution (continued)

4.3 Implementation

In order to confirm that our semantics match the expected behaviour, we have implemented an
interpreter which follows our semantics. The interpreter is written in Prolog, as the logic pro-
gramming paradigm of Prolog allows the implementation to follow a similar structure as the rules
described above.

We’ve reproduced below a couple of excerpts from the implementation. The full implementation is
available in the source archive accompanying this report.

The exceprt below shows the main execution loop. The run predicate executes the actors contained
in a heap until termination, which happens when there are no more active actors. On each iteration
it uses the step predicate to perform a single execution step, and dumps the current state of the
heap to the console. The step predicate corresponds to the Global execution rule. It picks a
random actor from the list of active actors, and executes a single step in that actor, using the eval
predicate. The modified stack and expression is then written back to the heap.
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1 run(_Program , Heap, Heap) :-
2 heap:active_actors(Heap, []).
3
4 run(Program, Heap0, HeapFinal) :-
5 step(Program, Heap0, Heap1),
6 heap:dump(Heap1), nl,
7 run(Program, Heap1, HeapFinal).
8
9 % Global

10 step(Program, Heap0, Heap2) :-
11 heap:active_actors(Heap0, ActiveActors),
12 heap:random_member(ActorAddr -Actor0, ActiveActors),
13 Actor0 = (actor, ActorId, _, _, _, Stack0, Expr0),
14
15 eval(Program, (Heap0, Stack0, Expr0), (Heap1, Stack1, Expr1)),
16
17 heap:update_actor_state(Heap1, ActorAddr , Stack1, Expr1, Heap2).

The eval predicate executes a single step in a given actor, potentially modifying the heap, the actor’s
stack and expression. There is a separate rule for the predicate for each rule of our semantics. For
example, the excerpt below show the Async rule, which invokes a behaviour on a remote actor.
The implementation follows very closely the rule as described in the previous section.

1 % Async
2 eval(Program, (Heap0, [Frame|Stack], expr(call_method(term(ActorTerm),
3 MethodId,
4 TyValues,
5 Args))),
6 (Heap, [Frame|Stack], term(ActorTerm))) :-
7 frame:get(Frame, ActorTerm , ActorAddr),
8 heap:get(Heap0, ActorAddr , Actor),
9 Actor = (actor, ActorId, _, _, _, _, _),

10
11 program:method(Program, ActorId, MethodId, (actor, be, _, _, TyArgs)),
12 maplist(\T^V^(T-R)^(frame:resolve(Frame, Program, V, R)),
13 TyArgs, TyValues, EnvList),
14 list_to_assoc(EnvList, MethodTyEnv),
15
16 maplist(\term(Term)^V^(frame:get(Frame, Term, V)), Args, ArgValues),
17
18 heap:queue(Heap0, ActorAddr , (MethodId, MethodTyEnv , ArgValues), Heap).
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Example trace

The interpreter can be used to produce an execution trace of the program. We can use the following
program, which makes use of invocaton of constructors on type variables.

1 actor A
2 var f: Main
3 new create(x: Main) =>
4 this.f = x ; this
5
6 class B[X]
7 new create(x: Main) =>
8 X.create(x) ; this
9

10 actor Main
11 new create() =>
12 B[A].create(this) ; this

The initial program state is shown below, and consist of a single actor of type Main with a single
frame executing the create constructor.

1 #0 : actor Main ()
2 * create
3 - this = #0

After a number of steps, the program has created an instance of the class B[A], whose constructor
is executing on the main actor. The runtime environment of the object is show in brackets on line
8 below.

1 #0 : actor Main ()
2 * create
3 - this = #1
4 - "x" = #0
5 * create
6 - 0 = #0
7 - this = #0
8 #1 : class B[X="A"]

The object’s constructor will execute the X.create(x) expression, which resolves the type to con-
struct through its environment, and creates a new actor of type A, and sends it a message to invoke
its constructor.

1 #0 : actor Main ()
2 * create
3 - 0 = #0
4 - 1 = #2
5 - this = #1
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6 - "x" = #0
7 * create
8 - 0 = #0
9 - this = #0

10 #1 : class B[X="A"]
11 #2 : actor A (create([#0]))
12 - f = null

Eventually, all the behaviours and methods will have terminated, and the program reaches the
following expected state:

1 #0 : actor Main ()
2 #1 : class B[X="A"]
3 #2 : actor A ()
4 - f = #0
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Chapter 5

Typing rules

5.1 Approach

Before we describe the typing rules for PonyPL, we first give in this section two properties we want
from our rules, and present a few approaches to typing generics.

5.1.1 Desired properties

Extensibility

The first property we want from our typing rules is extensibility of programs. Given a well formed
program, adding new definitions should not cause any of the preexisting ones to become ill-formed.
This is important to ensure programs can be written incrementally.

There are various levels of extensibility, depending on what kind of definitions can be added and
how they have to be added in order for existing definitions to continue to be well typed. There is
a tradeoff between how many programs the rules accept, and how extensible these programs are.

For instance, programs written in the Rust language are only partially extensible, as there are
situations where adding a new definition can cause existing ones to become ill-formed. In Rust,
implementations of traits are separate from the definition of the types. However, implementations
must not overlap, that is there must be at most one implementation for each pair of type and trait.

In the example below, on line 5 we provide an implementation of N1 for A, and on line 6 we provide
one for any type X which already implements N2. The two implementations do not overlap only
because A does not implement N2.
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1 struct A {}
2 trait N1 {}
3 trait N2 {}
4
5 impl N1 for A {}
6 impl<X: N2> N1 for X {}

However, extending the program with an implementation of N2 for A, as shown below on line 8,
causes the two implementations on lines 6 and 7 to overlap for A, making the program ill-formed.

1 struct A {}
2 trait N1 {}
3 trait N2 {}
4
5 // error: overlapping implementations of A for N1
6 impl N1 for A {}
7 impl<X: N2> N1 for X {}
8
9 impl N2 for A {}

The Rust language mitigates this through coherence rules which restrict how and where trait im-
plementations may be defined. Through these rules, adding new implementations can only create
overlaps in the current package, not in others.

Modularity

We also want our system to allow for modularity, wherei changing a method’s body should not
cause any existing, well formed uses of the method to become ill-formed, as long as the signature of
the method is not modified. This allows different parts of a program to be developed independently,
as long as the signature of methods has been agreed upon.

Templates in C++ are an example of poor modularity. A use of a function template is correct
only if after replacing the type variables with their instantiation, the function is well-formed. For
example below, the call to the baz method on line 10 is only correct because, when replacing X by
A, the function is well-formed.
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1 class A {
2 void foo() {}
3 }
4 template <typename X> baz(X x) {
5 x.foo()
6 }
7
8 void main() {
9 A a;

10 baz<A>(a);
11 }

It is however impossible to determine what requirements exist on the type argument without looking
into the body of the baz function, and these may change without modifications to the signature.
For example, if the baz function is changed to call the bar method on x, then its use on line 10
becomes ill-formed since the type A does not provide such a method.

1 class A {
2 void foo() {}
3 }
4 template <typename X> baz(X x) {
5 x.bar()
6 }
7
8 void main() {
9 A a;

10 baz<A>(a); // error: no method named foo in class A
11 }

The concepts proposal for the C++ language adds a way to define better modularity on templates.

5.1.2 Delayed typing

The first approach to typing generics we present is inspired by the design of C++ and D templates.
Under this model, generic definitions are always well formed, as long as there are syntactically
correct of course. Instead, typing is delayed until the definition is instantiated. After instantiation,
all occurences of type variables have been replaced by concrete types, and the typing rules from
Pony0 can be reused with just a few changes.

In the example below, the definition of A is always well formed. However, while instantiating it
with B ref is allowed, it cannot be instantiating with C ref, as shown on lines 11 and 14.
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1 class A[X]
2 new create() => ¨ ¨ ¨

3 fun m(x: X) => x.foo()
4 class B
5 fun foo() => ¨ ¨ ¨

6 class C
7 fun bar() => ¨ ¨ ¨

8
9 class Main

10 new create() =>
11 let ab : A[B ref] = A[B ref].create()
12
13 // error: no method named foo in class C
14 let ac : A[C ref] = A[C ref].create()

While this approach is both simple to formalise and is the one which allows the most programs,
it does not allow modularity between different definitions, just like C++ and D templates. While
the instantiation A[B ref] is allowed in the above, it may not be if the body of A is changed, even
without changing signatures.

5.1.3 Exhaustive typing

In order to allow good modularity, we want to use bounds on type variables, and ensure any
instantiation which fits these bounds is well-formed. One approach in doing so is to instantiate the
definition exhaustively and make sure it is always well-formed.

In the program below, the generic class A would be well-formed is for every possible instantiation of
X, the type of the method m’s body is a subtype of the return type. The only possible instantiations
of X are N κ, B κ and A[T] κ for any type T and capability κ, since these are the only types defined
in the program. Because these are all subtypes of N tag, the class A would be well-formed under
this approach.

1 trait N
2 class A[X] is N
3 fun m(x: X) : N tag => x
4 class B is N

This approach has two major inconvenients. First of all there may exist an infinite number of
instantiations, such as B ref, A[B ref] ref, A[A[B ref] ref] ref, ... While, in this example, it
is easy to show they are all subtypes of N tag, it may not always be the case making it impossible
to check all instantiations exhaustively.

Additionally, this approach does not provide the extensibility of programs we desire. Indeed, ex-
tending the program with a new class C which does not implement N, as shown below, creates an

57



instantiation of A[X] which is not well-formed.
1 trait N
2 class A[X] is N
3 // error: possible instantiation C tag of X is not a subtype of N tag
4 fun m(x: X) : N tag => x
5 class B is N
6 class C

5.1.4 Abstract typing

This approach treats type variables in an abstract way, without instantiating them. This way the
well-formness of a definition cannot be affected by adding new types to the program, preserving
extensibility.

Unlike the approaches we’ve described earlier, this one needs to be able determine well-formness
of uninstantiated definitions. This requires new typing rules which to handle type variables. For
example, we need to define method and field lookup on expression whose type is a variable, and
define subtyping in the presence of variable.

In the example below, in order for the foo method in line 4 to be well-formed, the type of the body,
X, must be a subtype of the return type, N ref. Similarily, in order for the bar method on line 5
to be well-formed, the X type must expose a m method.

1 trait N
2 fun m()
3 class A[X: N #read]
4 fun foo(x: X) : N box => x
5 fun bar(x: X) => x.m()

In both cases, under this approach, these are allowed because of the bounds on the type variable X.
A type variable is a subtype of its bound, and lookup of methods on type variables is performed on
their bound. In the previous example, both methods are ill-formed if the bound on X is removed,
as shown below.

1 trait N
2 fun m()
3 class A[X]
4 // error: X is not a subtype of N box
5 fun foo(x: X) : N box => x
6 // error: no method m defined on type X
7 fun bar(x: X) => x.m()

This approach is used successfully by other languages such as Java and C#. However, the presence
of type operators in PonyPL make it hard to define subtyping in an abstract way. While we can
easily establish in the example above that X is a subtype of N box based on its bound, it is less

58



straightforward to determine whether for example thisŹX+ should be a subtype N box, and under
which conditions.

While it would probably be possible to find such rules, there would need to be a large number of
them in order to handle all possible shapes of types while still being both sound and flexible.

5.1.5 Partially reified typing

We introduce a new approach to typing generics based on partial reification, which is a combina-
tion of the abstract and the exhaustive approaches described previously. Compared to the other
approaches, it preserves both extensibility and allow modularity, while being much simpler to for-
mulate than abstract typing.

This approach is similar to the abstract typing one. Type variables are kept abstract, and their
bounds are used to perform method and field lookup. The abstract typing approach however
required subtyping to be defined for type variables as well, which would have been hard to define
in the presence of type operators.

Concrete types in Pony are comprised of a type identifier and a capability. Partial reification of
type variables keeps the type identifier abstract, but assigns concrete capabilities exhaustively based
on the variable’s bound. For example, a type variable X bound by N #read would be reified into
X box, X val and X ref. Because type operators can be reduced away when all the capability are
known, it is not necessary to define subtyping rules to operate directly on the operators. Instead
they can be defined in terms of subtyping on the reified and reduced types, which is much simpler.

For example, in the type thisŹX+, where X is bounded by N #send, this can be reified into any
of box, val or ref. Similarily, X can be reified into any of X tag, X val or X iso. Applying these
reifications to the original type and reducing the operators results in only two types, X tag and
X val.

While partial reification exhaustively assigns capabilities to type variables, there is only a fixed,
small number of capabilities. It is therefore trivial to enumerate the set of possible reifications,
unlike the exhaustive typing approach which required enumerating the potentially infinite set of
possible instantiations. Additionally, partial reification preserves extensibility of programs since
adding new types does not create new reifications which must be taken into account.

On the other hand, partial reification may make the language itself, as opposed to programs, less
extensible than under the abstract typing approach. Indeed, introducing new capabilities would
introduce new possible reifications, and previously well-formed definitions may not be so anymore
afterwards. Adding new types of reference capabilities to the language is however a much more
fundamental change than simply adding new definitions to a program, and it seems reasonable that
such a change may cause existing programs to become ill-formed.
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5.2 Introduction

We will introduce, in Section 5.3, the typing rules of expressions for PonyPL. These rules however
depend on a number of functions and relations for which we first give an overview. We will come
back to these and define them formally later in this chapter.

Typing contexts and environments

The typing of expressions is dependent on the types of the local variables in scope. We represent
these with as a typing context, which we note Γ. It is a finite mapping from variable names to the
corresponding type.

Γ P TypeCtx = LocalId Ñ Type

With the introduction of generics, typing of expressions is also dependent on a typing environment
β, which maps type variables to their bounds, and within methods maps the this viewpoint to a
capability bound.

β P TypeEnv = TypeVarID Y tthisu Ñ TypeBound Y CapBound
@X. X P β Ñ β(X) P TypeBound
this P β Ñ β(this) P CapBound

Upper bound

In order to determine the type of field accesses, method calls and constructor invocations, we must
first lookup their signature in their type’s definition, using the lookup rules presented in section
Section 5.14. However, the type used to lookup may be a type variable, such as in the example
below.

1 class A[X: Y+, Y: B ref]
2 fun m(x: X) =>
3 x.n()
4 class B
5 fun n() => ¨ ¨ ¨

We call the upper bound of a type variable the non-variable basic type which transitively bounds
the variable. When typing a method call for instance, its signature is looked up on this upper
bound instead. For example, on line 3 above, the method’s signature is looked on the upper bound
of X, which is B.

upperBoundβ :: Type Ñ (TypeID ˆ BasicType)
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Subtyping

Pony supports subsumption, which allows a value of type T to be used where a value of type T1, as
long as T has the same properties as T1, in which case we call T a subtype of T1. We use the notation

β $ T ď T1

to indicate that T is a subtype of T1, in an environment β. The judgment’s shape reflects the
dependency of subtyping on the type environment.

In the example below, the bar method on line 8 expects an argument of type B box. The foo
method calls the bar method by providing x as an argument. Even though x has type A ref, this
method call is well-formed because A ref is a subtype of B box. Indeed the class A implements the
trait B, and a reference with a ref capability provides strictly more guaranteed than a box reference
does.

1 class A is B
2 trait B
3
4 class Main
5 fun foo(x: A ref) =>
6 this.bar(x)
7
8 fun bar(x: B box) => ¨ ¨ ¨

Bound compliance

Type variables in Pony have an associated bound which determines what type they may be instan-
tiated with. We say a type T is compliant with a bound BT if it can be used to instantiate a type
variable bound by it.

In the example below, the class A can only be instantiated with a type compliant with the bound
B #read. The instantiation with type C ref on line 9 is correct, whereas the one on the following
line are not as neither C tag nor D ref are compliant with the bound.

1 class A[X: B #read]
2 new create() => ¨ ¨ ¨

3 trait B
4 class C is B
5 class D
6
7 class Main
8 new create() =>
9 A[C ref].create()

10 A[C tag].create() // error: C tag is not compliant with bound B #read
11 A[D ref].create() // error: D ref is not compliant with bound B #read
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Since both the type and the bound may contain type variables, the relation is dependent on the
type environment. We use the notation

β $ T Î BT

if T is compliant with BT given the environment β.

5.3 Expression Typing

Expression typing depends directly on the typing context to determine the type of variables, and
indirectly on the typing environment through the relations presented in the previous section. We
therefore use the following judgment to express that e has type T in the type context Γ and
environment β

Γ;β $ e : T

The typing rules for expressions are given in Figure 5.1.

• The base type for method calls and field access may be a type variable. To account for this,
the corresponding rules make use of upperBound when looking up fields and methods of a
type.

• In Pony0, the rules T-AsnLocal, T-Fld, T-AsnFld and T-Alias each modify the type’s
capability. In PonyPL however, types’ capabilities are not be known until all type variables
are instantiated. Instead, the new syntaxes we’ve introduced for type operators are used to
construct types which encode the desired modification to capabilities. These operators are
only reduced once all the type variables are instantiated through reification, as described in
Section 5.5

• The rules T-Call and T-Ctor must ensure type arguments, and the receiver type in the
case of method calls, are compliant with their bound. Note that these do not use regular
subtyping ď, but a different relation Î which does not allow capability subtyping, as explained
in Section 2.3.4.

• The field access, method call and constructor call rules pass type arguments to the corre-
sponding lookup rules, which are responsible for replaces occurences of type variables in the
signatures with the given type arguments.

5.4 Upper bound

The function upperBoundβ , introduced in Section 5.2, determines a type’s upper bound and is
defined below. The upper bound is used to lookup signatures of fields and methods.
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x P Γ

Γ;β $ x : Γ(x)
T-Local

Γ(x) = T Γ;β $A e : T
Γ;β $ x = e : T´

T-AsnLocal

Γ;β $ e : T
F(upperBoundβ(T) , f) = T1

Γ;β $ e.f : T Ź T1
T-Fld

Γ;β $ e : T
F(upperBoundβ(T) , f) = T1

Γ;β $A e1 : T2 β $ T2 ď T1

β $ T Ÿ T2

Γ;β $ e.f = e1 : (T Ź T1)´
T-AsnFld

Γ;β $ e : T Γ;β $ e1 : T1

Γ;β $ e; e1 : T1 T-Seq

Γ;β $A e : T
Md(upperBoundβ(T) , n[ T; T ]) = (BT, X : BT , x : T1, T1)

β $ T Î BT β $ Ti Î BTi Γ;β $A ei : T1
i

Γ;β $ e.n[ T; T ](e) : T1
T-Call

Kd(upperBoundβ(KT) , k [ T ] ) = (X : BT , x : T1, κ)

β $ Ti ĺ BTi Γ;β $A ei : T1
i

Γ;β $ KT.k [ T ](e) : KT κ
T-Ctor

Γ;β $ e : T1 β $ T1 ď T
Γ;β $S e : T

T-Subsume
Γ;β $S e : T

Γ;β $A e : T+
T-Alias

DS P P β $ (DS[ T ] iso˝) ˛

Γ;β $ null : DS[ T ] iso˝
T-Null

Figure 5.1: Expression typing
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The upperBoundβ function recursively replaces type variables with their bound, until a non-variable
type is reached. Capabilities and type operators, as these are irrelevant to method lookup.

upperBoundβ :: Type Ñ RawType
upperBoundβ(X) = upperBoundβ(β(X))

The definition of upperBound is extended to include other type syntaxes, by ignoring their capability.

upperBoundβ(DS[ T ] ν) = DS[ T ]
upperBoundβ(X κ) = upperBoundβ(X)
upperBoundβ(T+) = upperBoundβ(T)
upperBoundβ(T´) = upperBoundβ(T)
upperBoundβ(VP Ź T) = upperBoundβ(T)
upperBoundβ(recover T) = upperBoundβ(T)

If a type variable’s bounds form a cycle, such as in the example below, then the upper bound is
undefined. Without an upper bound, it is not possible to lookup field and method signatures on
the type, making any field access or method call on an expression of this type invalid

1 class A[X: Y, Y: X]
2 fun m(x: X) =>
3 // error: type X has no upper bound
4 x.n()
5
6 // error: type X has no upper bound
7 x.f

5.5 Reification

In Sections 5.7 to 5.11, we will define a numer of relations and properties on types, such as subtyping,
bound compliance, or sendability. These are similar relations and properties as introduced by
[Clebsch et al., 2015] and [Steed, 2016]. Both of these model have a single form of type, DS κ,
comprised of a type identifier and a capability.

In PonyPL however, we’ve introduced more forms of types, through the addition of type variables
and type operators. These complex form of types make it more complicated to define many of the
relations and definitions directly. This would involve a lot of different rules to handle the various
forms. Additionally, these numerous rules would make a proof of soundness more complicated.

We’ve instead followed a different approach, which assigns concrete capability to each type variable.
Since each type variable admits multiple capabilities there can be multiple such assignments. Given
a specific assignment, it is possible to reduce the type operators can be reduced as these only
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represent manipulation of capabilities, which are known thanks to the assignment. Reduction
leaves the types into a form BRT κ. The relations we are interested in are much easier to define on
types of this form than on the form general of types. A relation holds on some types only if holds
on the reduced types for all acceptable assignments.

For example, behaviours require their arguments to be sendable from one actor to actor to an other.
In order for the actor A below to be well-formed, the type of the argument of the b behaviour, valŹX,
must be sendable.

1 trait N
2 actor A[X: N #alias]
3 be m(x: valŹX) => ¨ ¨ ¨

Given the environment β = [ X ÞÑ N #alias ], the type variable X accepts as capabilities any of tag,
box, val and ref. The behaviour’s argument’s type valŹX is therefore rewritten as valŹ(X tag),
valŹ(X box), valŹ(X val) and valŹ(X ref). Following the rules we define in Section 5.5.1,
these reduce into either X tag or X val, which are both sendable types. The type valŹX is thus
sendable.

5.5.1 Type Reduction

We call a partial reification π a mapping which assigns each type variable a concrete capability.
The partial reification may also map this to a concrete capability.

π P TypeVarID Y tthisu Ñ Cap

Given a partial reification π, type reduction annotates type variables with the capability assigned in
π. Reduction also replaces type operators using their corresponding definitions, which we describe in
Figures 5.4 and 5.5. This is possible since all the operators represent a manipulation of capabilities,
and the partial reification has given a value to all of them.

The reduction rules are described below in Figure 5.2. We use the notation

π $ T ó BRT κ

if the type T reduces to BRT κ given the partial reification π, where BRT is a basic reified type, as
described in Section 3.3.1.
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π(X) = κ

π $ X ó X κ π $ X κ ó X κ

π $ T ó BRT κ

π $ DS[ T ] κ ó DS[ BRT κ ] κ

π $ T ó BRT κ

π $ T+ ó BRT A(κ)

π $ T ó BRT κ

π $ T´ ó BRT U(κ)
π $ T ó BRT κ

π $ recover T ó BRT R(κ)

π $ T ó BRT κ
π $ T1 ó BRT1 κ1

π $ T Ź T1 ó BRT1 Vp(κ, κ1)

π $ T ó BRT κ1

π $ κ Ź T ó BRT Vp(κ, κ1)

π(this) = κ
π $ T ó BRT κ1

π $ this Ź T ó BRT Vp(κ, κ)

Figure 5.2: Reduction of types with a partial reification

For example, given the partial reification π = [ X ÞÑ ref, this ÞÑ box ], then thisŹX reduces
to X box. Not that reduction is deep and applies to type arguments as well, so for example
A[thisŹX] ref reduces to A[X box] ref.

Note that viewpoint adaptation is not defined when the viewpoint is tag, making reduction of types
where such a viewpoint occurs undefined. For example, given π = [ X ÞÑ tag ], neither of tagŹA ref
nor XŹA ref are reducible.

We overload reduction in Figure 5.3 to be defined on bounds as well.

π(X) = κ

π $ X ó X κ

π $ T ó BRT κ

π $ DS[ T ] ν ó DS[ BRT κ ] ν

π $ BT ó BRT ν

π $ BT+ ó BRT A(ν)

π $ BT ó BRT ν

π $ BT´ ó BRT U(ν)

Figure 5.3: Reduction of bounds with a partial reification

Since the reduction rules are syntax directed, we can define the function reduceπ below. The
function is overloaded for both types and bounds.

reduceπ :: Type Ñ ReifiedType
reduceπ(T) = BRT κ iff π $ T ó BRT κ

reduceπ :: Bound Ñ ReifiedBound
reduceπ(BT) = BRT ν iff π $ BT ó BRT ν

The reduceπ function is partial, and is undefined if the type cannot be reduced due to tag being
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used as a viewpoint. For example, if π = [ X ÞÑ tag ] then reduceπ(X Ź A ref) is undefined.

Aliasing and unaliasing of capabilities

A(ν) =

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

tag iff ν = iso
box iff ν = trn
iso iff ν = iso˝

trn iff ν = trn˝

#alias iff ν = #any
#share iff ν = #send
#any iff ν = #any˝

#send iff ν = #send˝

ν otherwise

U(ν) =

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

iso˝ iff ν = iso
trn˝ iff ν = trn
#any˝ iff ν = #any
#send˝ iff ν = #send
ν otherwise

Figure 5.4: Aliasing and unaliasing of capabilities

We extend the definition of aliasing and unaliasing from PonyGS to support capability constraints.
For each constraint, these definition are obtained by aliasing or unaliasing individual concrete
capabilities it allows. For example, #send allows conrete capabilities iso, val and tag, which
respectively alias as tag, val and tag. The alias of #send is therefore #share, since it allows
exactly tag and val. The same reasoning is used to obtain the aliasing and unaliasing of each
constraint, which are enumerated in Figure 5.4.

Viewpoint adaptation

Vp(κ, κ1) κ1

κ iso trn ref val box tag

iso iso tag tag val tag tag

trn iso trn box val box tag

ref iso trn ref val box tag

val val val val val val tag

box tag box box val box tag

tag K K K K K K

Figure 5.5: Viewpoint Adaptation
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Since bounds do not allow viewpoint adaptation, we do not need to define viewpoint adaptation
on capability constraints, unlike aliasing and unaliasing. The definition is therefore identical to the
one used in PonyGS, and is reproduced in Figure 5.5.

5.5.2 Reification set

In order to define relation on types, we are interested in finding all the reifications of types. This
requires finding all the reifications allowed by an environment.

The capBoundπ,β function, defined below, determines which capabilities a type variable may take.
Because type variables may be bounded by other type variables, the capability bound depends on
the partial reification π in addition to environment β.

capBoundπ,β :: TypeVar Ñ CapBoundMod
capBoundπ,β(X) = ν iff reduceπ(β(X)) = BRT ν

For example, given the following type environment and partial reification,
β = [ X ÞÑ X, Y ÞÑ Z+, Z ÞÑ Any #any ]
π = [ X ÞÑ X ref, Y ÞÑ Y box, Z ÞÑ Z trn ]

then the capability bounds of X, Y and Z are
capBoundπ,β(X) = ref capBoundπ,β(Y) = box capBoundπ,β(Z) = #any

Since X and Y’s bounds depend on type variables, their capability bound is a concrete capability,
based on the other variable’s assigned capability in π. On the other hand, since Z’s in bound with
a capability constraint, it’s capability bound is thus independent of π.

A partial reification π is well-formed with respect to a type environment β if it assigns to each type
variable of the environment a capability compatible with the variable’s bound. Additionally, the
partial reification must map this to a capability allowed by its bound in β, if it enusts. In this
case, we say π is a partial reification of β, and we note it β $ π. The relation used to determine if a
capability is allowed by a capability (Î) is the same as used by bound compliance, and is described
in section Section 5.8.

dom(π) = dom(β)
@X P β. π(X) Î capBoundπ,β(X)
this P β Ñ π(this) Î β(this)

β $ π

For example, the type environment β = [ X ÞÑ A #share, this ÞÑ #read ] allows the following six
different partial reifications,

π1 = [ X ÞÑ tag, this ÞÑ box ] π2 = [ X ÞÑ val, this ÞÑ box ]
π3 = [ X ÞÑ tag, this ÞÑ val ] π4 = [ X ÞÑ val, this ÞÑ val ]
π5 = [ X ÞÑ tag, this ÞÑ ref ] π6 = [ X ÞÑ val, this ÞÑ ref ]
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Because the capBound function depends on the reification itself, it cannot be used to find all
well-formed reifications directly. However, given a reification it is possible to check whether it is
well-formed. Since for a set of type variables there can only enust a finite number of reifications, the
set of well-formed reifications for a given environment is obtained by enumerating all reifications
and eliminating the ones which aren’t well-formed.

The reifyβ function returns the set of reified types obtained by reducing a given type with each of
the environment’s well-formed reifications.

reifyβ :: Type Ñ P(ReifiedType)
reifyβ(T) = t(reduceπ(T) | β $ πu

For example, considering the example from the start of Section 5.5, given β = [ X ÞÑ N #alias ],
reifying the type val Ź X produces the set of type

reifyβ(val Ź X) = tX tag, X valu

We also define the reifyPairβ function below to perform pairwise reification, by applying reifications
to two types simultaneously. The function is overloaded to work with different combinations of types
and bounds.

reifyPairβ :: Type ˆ Type Ñ P(ReifiedType ˆ ReifiedType)
reifyPairβ(T, T1) = t(reduceπ(T), reduceπ(T1)) | β $ πu

reifyPairβ :: Type ˆ Bound Ñ P(ReifiedType ˆ ReifiedBound)
reifyPairβ(T, BT) = t(reduceπ(T), reduceπ(BT)) | β $ πu

reifyPairβ :: Bound ˆ Bound Ñ P(ReifiedBound ˆ ReifiedBound)
reifyPairβ(BT, BT1) = t(reduceπ(BT), reduceπ(BT1)) | β $ πu

Pairwise reification is used when defining relations between two types. For example, checking
whether X is a subtype of valŹX with π = [ X ÞÑ #send ] involves reifying the two types simultane-
ously, as shown below.

reifyPairβ(X, val Ź X) = t(X tag, X tag), (X val, X val), (X iso, X val) u

Both the reifyβ and the reifyPairβ function are undefined if reducing the types fails with any of
the well-formed partial reifications. For example, given β = [ X ÞÑ N #alias ], reifying the type
X Ź A ref fails since it cannot be reduced with π = [ X ÞÑ tag ], even though there are other partial
reifications of β for which the reduction is defined.
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5.6 Inheritance (Ď)

β $ RT Ď RT2 β $ RT2 Ď RT1

β $ RT Ď RT1 I-Trans

β $ Ti ď T1
i β $ T1

i ď Ti
β $ DS [ T ] Ď DS [ T1 ]

I-Refl1
β $ X Ď X

I-Refl2

β $ implements(DS [ T ] , S [ T1
])

β $ DS [ T ] Ď S [ T1 ]
I-Struct

β $ I [ T1 ] P Is(DS [ T ])
β $ DS [ T ] Ď I [ T1 ]

I-Nominal

X P β

β $ X Ď basicBound(β(X))
I-Bound

Figure 5.6: Inheritance

We define inheritance, in Figure 5.6, as a relation between basic types. Inheritance is used in
sections Sections 5.7 and 5.8 to define subtyping and bound compliance. We use the notation

β $ RT Ď RT1

when RT inherits from RT1 given a type environment β. Inheritance is transitive by the I-Trans
rule, and reflexive by the I-Refl1 and I-Refl2 rules.

As explained in Section 2.3.6, type arguments are generally invariant, which means a type A[T]
does not necessarily inherit from A[T'], even if T is a subtype of T. However, the I-Refl1 allows
type arguments to be replaced by equivalent arguments. Two types T and T' are equivalent if they
are both subtypes of the other, that is β $ T ď T1 and β $ T1 ď T. This can happen for example
when two interfaces require the same set of methods, such as in the example below. Since the types
N1 box and N2 box are equivalent, A[N1 box] inherits from A[N2 box] and vice-versa.

1 interface N1
2 fun m()
3 interface N2
4 fun m()
5
6 class A[X]
7
8 // N1 box and N2 box are equivalent
9 // A[N1 box] inherits from A[N2 box]

10 // A[N2 box] inherits from A[N1 box]
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5.6.1 Nominal Inheritance

β $ I [ T1 ] P Is(DS [ T ])
β $ DS [ T ] Ď I [ T1 ]

I-Nominal

The rule I-Nominal handles nominal inheritance. A basic type DS[ T ] inherits an abstract type
I[ T1 ] if the parent is a member of the set of types which the child explicitely inherits from. This set
is determined by the lookup rule Is, defined in section Section 5.14. The lookup rule substitutes
type variables with their instantiations. For example, given the definitions below, the set of parent
types of A[B] is I(A[ B ]) = tN1, N2[ A ]u.

1 trait N1
2 trait N2[X]
3
4 class A[Y] is N1, N2[Y]
5 class B
6
7 // A[B] inherits nominally from N1 and N2[B]

5.6.2 Structural Inheritance

β $ implements(DS [ T ] , S [ T1
] )

β $ DS [ T ] Ď S [ T1 ]
I-Struct

@KS1 P Ks(S[ T1 ]). DKS P Ks(DS[ T ]). β $ KS ď KS1

@MS1 P Ms(S [ T1 ]). DMS P Ms(DS [ T ]). β $ MS ď MS1

@BS1 P Bs(S [ T1 ] ). DBS P Bs(DS [ T1 ]). β $ BS ď BS1

β $ implements(DS [ T1 ] , S [ T ])

Structural inheritance is allowed by the rule I-Struct. This rule makes a basic type DS[ T ] inherit
the interface S[ T1 ] if it implements the interface, by providing all of the methods required by the
parent, with compatible signatures.

For example, given the definitions below, the type A[B] implements, and therefore inherits, the
interfaces S1 and S2[B], but not S2[C] since, after replacing the type variables, the signatures of
the m1 method are not compatible. The type A[C] inherits S2[C] but not from S1 nor S2[B] for
similar reasons. Finally, since structural inheritance is restricted to interfaces, neither A[B] nor
A[C] inherit from the trait N, even though they both implement it.
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1 interface S1
2 fun m1(x: B)
3 interface S2[X]
4 fun m2(x: X)
5 trait N
6 fun m3()
7
8 class A[Y]
9 fun m1(x: Y) => ¨ ¨ ¨

10 fun m2(x: Y) => ¨ ¨ ¨

11 fun m3() => ¨ ¨ ¨

12
13 class B
14 class C
15
16 // A[B] inherits structurally from S1 and S2[B].
17 // A[C] inherits structurally from S2[C]

5.6.3 Bound Inheritance

X P β

β $ X Ď basicBound(β(X))
I-Bound

Finally, a type variables inherits from its bound, by the I-Bound rule. This comes from the fact
that it can only be instantiated by types which inherit themselves from the bound. Inheritance is
defined on basic types, whereas the type environment maps type variables to bounds. We therefore
define the recursive function basicBound, which strips capabilities and type operators from the
bound to determine the underlying basic type.

basicBound :: TypeBound Ñ BasicType
basicBound(DS[ T ] ν) = DS[ T ]
basicBound(X) = X
basicBound(BT+) = basicBound(BT)
basicBound(BT´) = basicBound(BT)

For example, given the definitions below, the type variable X inherits from N, which is the result
of removing capabilities and type operators from its bound, N box, through the application of ba-
sicBound. Similarily, Y inherits from X and Z inherits from B[X]. Finally, while the rule I-Bound
only applies to immediate bounds, inheritance is transitive through the I-Trans, thus X also in-
herits from Y.

72



1 class A[X: N box, Y: X+]
2 // X inherits from its basic bound, N.
3 // Y inherits from its basic bound, X, and transitively from N.
4
5 fun m[Z: B[X] iso]() => ¨ ¨ ¨

6 // Z inherits from its basic bound, B[X].
7
8 trait N
9 class B[W]

5.7 Subtyping (ď)

iso˝ ď tiso, trn˝u trn˝ ď ttrn, ref, valu ttrn, ref, valu ď box

tiso, boxu ď tag κ ď κ

κ ď κ2 κ2 ď κ1

κ ď κ1

Figure 5.7: Subtyping of capabilities
Reproduced from [Steed, 2016]

The subtyping relation for capabilities is presented in Figure 5.7. This definition of capability
subtyping is borrowed from [Steed, 2016]. We use the notation κ ď κ1 if the capability κ is a
subtype of κ1, as well as the shorthand tκ, κ1u ď κ2 if both κ and κ1 are subtypes of κ2. Figure 5.8
presents the same relation using a graphical representation.
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tag

box

trn ref val

iso

iso˝

trn˝

Figure 5.8: Subtyping of capabilities
Reproduced from [Steed, 2016]

We extend the definition of subtyping to reified types as the ďreified relation, in Figure 5.9. Sub-
typing of reified types allows both capability subtyping and inheritance of the basic types.

κ ď κ1 β $ BRT Ď BRT1

β $ BRT κ ďreified BRT1 κ1

Figure 5.9: Reified subtyping

Finally we extend the definition of subtyping to full types through pairwise reification, as shown in
Figure 5.10

@(RT, RT1) P reifyPairβ(T, T1). β $ RT ďreified RT
β $ T ď T1

Figure 5.10: Reified subtyping
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5.8 Bound compliance (Î)

The bound compliance relation is used to determine whether a type can be used to instantiate a
type variable, given the variable’s bound.

We first define bound compliance for capabilities, in Figure 5.11. We use the notation κ Î ν if
capability κ is compliant with bound ν. Capability bounds can be either a concrete capability κ,
or a capability constraint, recognizable by the # symbol in their names. If a concrete capability
is used as a bound, it only allows itself as a compliant capability. On the other hand, capability
constraints allow a set of concrete capabilities.

tiso, trn, ref, val, box, tagu Î #any tiso, val, tagu Î #send

tiso˝, trn˝, ref, val, box, tagu Î #any˝ tiso˝, val, tagu Î #send˝

tref, val, box, tagu Î #alias tref, val, boxu Î #read tval, tagu Î #share

κ Î κ

Figure 5.11: Capability bound compliance

We extend the definition of bound compliance to reified types and bounds as the Îreified relation,
in Figure 5.12. A reified type is compliant with a reified bound if its basic type BRT inherits from
the bound’s basic type BRT1, and its capability κ is compliant with the bound’s capability ν.

κ Î ν β $ BRT Ď BRT1

β $ constructible(BRT1) Ñ BRT R (AbstractTypeID ˆ ReifiedType)
β $ BRT κ Îreified BRT1 ν

Ks(upperBoundβ(BRT)) ‰ ∅
β $ constructible(BRT)

Figure 5.12: Reified bound compliance

Note that compared to subtyping, bound compliance imposes an additional requirement. If the
bound is constructible, that is if it has at least one constructor, then abstract types cannot be
compliant with this bound. This prevents cases such as in the example below, where the generic
class invokes a constructor on a type variable, but that type variable would have been instantiated
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with an abstract type.
1 interface Default
2 new default() : ref
3 class Cell[X: Default #any]
4 var f: X ref
5 new create() =>
6 this.f = X.default()
7
8 actor Main
9 new create() =>

10 Cell[A ref].create()
11
12 // error: abstract type Default ref does not satisfy
13 // constructible bound Default #any
14 Cell[Default ref].create()

Finally we extend the definition of bound compliance to full types through pairwise reification, as
shown in Figure 5.13

@(RT, RB) P reifyPairβ(T, BT). β $ RT Îreified RB
β $ T Î BT

Figure 5.13: Bound compliance

5.9 Sub-bound (ĺ)

We define a new relation, sub-bound, which is the equivalent of subtyping but applied to bounds
instead. A bound BT is a sub-bound of BT1, which we denote β $ BT ĺ BT1 if all types compliant
with BT1 are also compliant with BT.

We define this new relation the same way we’ve defined the other relations, first by defining it on
capabilities in Figure 5.14, then extending it to reified types as the ĺreified relation, and finally
extending it to full types through pairwise reification, as demonstrated in Figure 5.15.
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t#read,#alias,#share,#send˝u ĺ #any˝ t#read,#alias,#share,#sendu ĺ #any

#share ĺ t#send,#send˝u

κ Î ν

κ ĺ ν

Figure 5.14: Sub-bound of capabilities

ν ĺ ν1 β $ BRT Ď BRT1

β $ BRT ν ĺreified BRT1 ν1

@(RT, RT1) P reifyPairβ(BT, BT1). β $ RT ĺreified RT
β $ BT ĺ BT1

Figure 5.15: Sub-bound

5.10 Safe-to-Write (Ÿ)

It may not always be safe to write a reference into a object, even through a mutable reference to
the containing object. For instance if we could write a ref into an iso one, we could already have
another local alias to the inner object. The safe-to-write relation determines whether it is safe to
write a reference of a given type T into an object of type T'.

κ Ÿ κ iso trn ref val box tag

iso˝ ✓ ✓ ✓ ✓ ✓ ✓

iso ✓ ✓ ✓

trn˝ ✓ ✓ ✓ ✓ ✓ ✓

trn ✓ ✓ ✓ ✓

ref ✓ ✓ ✓ ✓ ✓ ✓

val

box

tag

Figure 5.16: Safe-to-write capabilities
Reproduced from [Steed, 2016]
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κ Ÿ κ1

β $ BRT κ Ÿreified BRT1 κ1

@(RT, RT1) P reifyPairβ(T, T1). β $ RT Ÿreified RT
β $ T Ÿ T1

5.11 Sendable Types

Sendable types’ capability must be one of iso, val or tag, as these deny the same aliases locally
and globally. Figure 5.17 defines a type as sendable if all of its reifications are sendable.

@(BRT κ) P reifyβ(T). κ P tiso, val, tagu

β $ Sendable(T)

Figure 5.17: Sendable types

5.12 Method subtyping

β1 = [ X ÞÑ BT1 ]

β Y β1 $ BT1
i ĺ BTi β Y β1 $ T1

i ď Ti κ ď κ1

β $
(
new k[ X : BT ](x : T) : κ

)
ď

(
new k[ X : BT1 ](x1 : T1) : κ1

)
β1 = [ X ÞÑ BT1, this ÞÑ ν1 ]

ν1 ĺ ν β Y β1 $ BT1
i ĺ BTi β Y β1 $ T1

i ď Ti β Y β1 $ T ď T1

β $

(
fun ν m [ X : BT ](x : T) : T

)
ď

(
fun ν1 m [ X : BT1 ] (x1 : T1) : T1

)
β1 = [ X ÞÑ BT1 ]

β Y β1 $ BT1
i ĺ BTi β Y β1 $ T1

i ď Ti

β $

(
be b [ X : BT ](x : T)

)
ď

(
be b [ X : BT1 ](x1 : T1)

)
Figure 5.18: Method subtyping

We define in Figure 5.18 rules for method subtyping. These rules allow for contra-variant receiver
capability, type argument bounds and formal argument types, and they allow for co-variant return
capability and type.
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5.13 Implementation

We have implemented parts of the type system using Coq, a proof assistant. Our implementation
covers the operational semantics of Pony0 and most of its typing rules. We have started imple-
menting the typing rules of PonyPL. So far we have implemented the reduction of types for a given
partial reification, as well as a number of auxiliary functions, such as upperBound.

We use Coq’s extraction feature [Letouzey, 2002] to generate a Haskell version of our implemen-
tation. We have also written a parser for Pony programs in Haskell, which combined with the
extracted Coq source provides an interactive prompt which can be used to type check and interpret
Pony expressions.

A excerpt of the Pony0 type checker is included as B. The rest of the source is included in the
archive accompanying this report. Our implementation reuses many general purpose data structures
from [Krebbers and Wiedijk, 2015].

5.14 Lookup rules

P = NT ST CT AT
class C [ X : BT ] I [ T ] F K M P CT

P(C) = (X : BT , I [ T ] , F, K, M, ϵ)

P = NT ST CT AT
actor A [ X : BT ] I [ T ] F K M B P AT

P(B) = (X : BT , I [ T ] , F, K, M, B)

P = NT ST CT AT
trait N [ X : BT ] I [ T ] KS MS BS P NT

P(N) = (X : BT , I [ T ] , KS , MS, BS)

P = NT ST CT AT
interface S [ X : BT ] I [ T ] KS MS BS P ST

P(S) = (X : BT , I [ T ] , KS , MS, BS)

Figure 5.19: Program lookup
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P(RS) = (X : BT, I[ T ], F, K, M, B)
Fr(RS) = tf | var f : T P Fu

P(RS) = (X : BT, I[ T ], F, K, M, B)
(new k [ X1 : BT1 ] (x : T) ñ e) P K

Mr(RS, k) = (X1 , x, e)

P(RS) = (X : BT, I[ T ], F, K, M, B)
(fun ν m [ X1 : BT1 ](x : T) : T ñ e) P M

Mr(RS, m) = (X1 , x, e)

P(RS) = (X : BT, I[ T ], F, K, M, B)
(be b [ X1 : BT1 ] (x : T) ñ e) P B

Mr(RS, k) = (X1 , x, e)

Figure 5.20: Runtime lookup

P(RS) = (X : BT , I[ T ], F, K, M, B)
var f : T P F

F(RS [ T ] , f) = [ X ÞÑ T ]T

Figure 5.21: Field lookup

P(RS) = (X : BT , I[ T ], F, K, M, B)

Ms(RS [ T ]) = [ X ÞÑ T ]tMS | MS ñ e P Mu

P(I) = (X : BT , I[ T ], KS, MS, BS)

Ms(I [ T ]) = [ X ÞÑ T ]MS

P(RS) = (X : BT , I[ T ], F, K, M, B)

Bs(RS [ T ]) = [ X ÞÑ T ]tBS | BS ñ e P Bu

P(I) = (X : BT , I[ T ], KS, MS, BS)

Bs(I [ T ]) = [ X ÞÑ T ]BS

(fun ν m [ X : BT ](x : T2) : T1) P Ms(DS[ T ])

Md(DS[ T ], m [ T; T1 ]) = [ this ÞÑ T, X ÞÑ T1 ](DS[ T ] ν, X : BT , x : T2, T1)

(be b [ X : BT ](x : T2)) P Bs(DS[ T ])

Md(DS[ T ], b [ T; T1 ]) = [ this ÞÑ T, X ÞÑ T1 ] (DS[ T ] tag, X : BT , x : T2, DS[ T ] tag)

Figure 5.22: Method lookup
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P(A) = (X : BT, I[ T ], F, K, M, B)
KS = t new k[ X1 : BT1 ](x : T1) : tag | (new k[ X1 : BT1 ](x : T1) ñ e) P K u

Ks(A[ T ]) = [ X ÞÑ T ]KS

P(C) = (X : BT, I[ T ], F, K, M, B)
KS = t new k[ X1 : BT1 ](x : T1) : ref | (new k[ X1 : BT1 ](x : T1) ñ e) P K u

Ks(C[ T ]) = [ X ÞÑ T ]KS

P(I) = (X : BT, I[ T ], KS, MS, BS)
Ks(I[ T ]) = [ X ÞÑ T ]KS

(new k[ X : BT ](x : T2)) P Ks(DS[ T ]) : κ
Kd(DS[ T ], k[ T1 ]) = [ X ÞÑ T1 ](X : BT, x : T2, κ)

Figure 5.23: Constructor lookup
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Chapter 6

Soundness

We have presented in Chapters 3 to 5 the syntax, semantics and typing rules of PonyPL, our new
model of the Pony language. In this chapter we present our initial work torwards a demonstration
of soundness for our model.

Pony0 is a restricted version of our model without generics. Pony0 is mostly just a reformula-
tion of PonyGS, as presented by [Steed, 2016], with minor changes in order to match the syntax
and definitions from PonyPL. The syntax, semantics and typing rules for Pony0 can be found in
Appendix A.

In order to argue about the soundness of our new model, we define a translation of programs from
PonyPL to Pony0. We would have wished to prove the soundness of the translation, by showing that
any valid PonyPL is translated to a Pony0 program where both programs have equivalent runtime
behaviour. Together with the soundness of PonyGS, presented in [Steed, 2016], this would form a
demonstration of the soundness of PonyPL.

Unfortunately, due to lack of time, we were not able to complete our work on formulating and
proving the soundness of our translation. We will therefore only be defining the translation, without
arguing about its soundness.

6.1 Translation of PonyPL programs

6.1.1 Overview

We define the translation of programs from PonyPL to Pony0 through full reification of generics.
Generic types and methods in the source PonyPL program are translated on-demand, by replacing
each occurence of type parameters by their instantiation. Each instantiation of a generic class used
by the program requires a distinct reified Pony0 copy.
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Consider the following example, which defines a class Cell generic over a type argument X, inspired
by the example from section . Furthermore, the get function is polymorphic over its receiver
capability, and this capability is reflected in the return type through the this viewpoint.

1 class Cell[X: Any #any]
2 var f: X
3 new create(x: X) => this.f = consume x
4 fun #read get() : this->X => this.f
5
6 class A
7 class B
8 actor Main
9 new create() =>

10 var x : Cell[A ref] box = Cell[A ref].create(A)
11 var y : Cell[A ref] ref = Cell[A ref].create(A)
12 var z : Cell[B iso] ref = Cell[B iso].create(B)
13
14 var a : A box = x.get[Cell[A ref] box]()
15 var a' : A ref = y.get[Cell[A ref] ref]()
16 var b : B iso = z.get[Cell[B iso] ref]()

The Pony0 translation of the example above is shown below. The Main actor from the PonyPL exam-
ple referenced two different instantiations of the Cell class, Cell[A ref] and Cell[B iso]. There-
fore, the translated program defines two distinct versions of the class, Cell_Aref and Cell_Biso.
In each class, the type parameter X has been replaced with its instantiation, repectively A ref and
B iso. Note that we use mangling to encode the type parameters as part of the class names, such
that the two version. We describe mangling in more details in Section 2.3.

Additionally, distinct versions of the receiver-polymorphic get method must be created in class
Cell_Aref, in order to reflect the receiver capability in the signature. Similarily, the name of the
translated methods are mangled to reflect the capability of the receiver.
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1 class Cell_Aref
2 var f: A ref
3 new create(x: A ref) => this.f = consume x
4 fun ref get_ref() : A ref => this.f
5 fun box get_box() : A box => this.f
6
7 class Cell_Biso
8 var f: B iso
9 new create(x: B iso) => this.f = consume x

10 fun ref get_ref() : B iso => this.f
11
12 class A
13 class B
14 actor Main
15 new create() =>
16 var x : Cell_Aref box = Cell_Aref.create(A)
17 var y : Cell_Aref ref = Cell_Aref.create(A)
18 var z : Cell_Biso ref = Cell_Biso.create(B)
19
20 var a : A box = x.get_box()
21 var a' : A ref = y.get_ref()
22 var b : B ref = z.get_ref()

Finally note that we only translate instances of generic types and methods which are needed by
the program. For example above, the translated program does not contain a translation of the
Cell[A box] class as it is not used by the rest of program. Similarily, the instance of get method
from the Cell[B iso] class with receiver capability box does not need to be included in the
translated program, as it does not get used.

6.1.2 Name mangling

In order to prevent the names of the multiple instances of the same type or method to conflict in the
translated program, their names are mangled to include the type parameters of the instantiation.
Three different mangling functions are used, depending on what kind of name needs to be mangled,
with the following signatures:

mangle :: TypeId ˆ GroundType Ñ TypeId
mangle :: MethodID ˆ Cap ˆ GroundType Ñ MethodID
mangle :: CtorID ˆ GroundType Ñ CtorID

The arguments to the functions correspond to the original name in the PonyPL program, along
with potential receiver capability and type arguments.
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We leave the mangling functions unspecified. We only require them to form bijections In our
examples we use a simple and intuitive mangling based on concatenation separated by underscores.

6.1.3 Translation contexts

We call a translation context Π a mapping from type variables to ground types and from this to
a concrete capability.

Π P TypeVarID Y tthisu Ñ GroundType Y Cap
where:

@X P Π. Π(X) P GroundType
this P Π Ñ Π(this) P Cap

The translation context will be used to determine how type variables and the this viewpoint should
be replaced in the translated program.

6.1.4 Translation of types

Translation of types is similar to the partial reification we defined in section 5.5. Indeed, we overload
the notation

Π $ T ó GT

to denote that T reduces to GT given the translation context Π. We define the rules of translation
below in Figure 6.1.

Π(X) = GT
Π $ X ó GT

Π(X) = BGT κ1

Π $ X κ ó BGT κ

Π $ T ó BGT κ

Π $ DS[ T ] κ ó DS[ BGT κ ] κ

Π $ T ó BGT κ

Π $ T+ ó BGT A(κ)

Π $ T ó BGT κ

Π $ T´ ó BGT U(κ)
Π $ T ó BGT κ

Π $ recover T ó BGT R(κ)

Π $ T ó BGT κ
Π $ T1 ó BGT1 κ1

Π $ T Ź T1 ó BGT1 Vp(κ, κ1)

Π $ T ó BGT κ1

Π $ κ Ź T ó BGT Vp(κ, κ1)

Π(this) = κ
Π $ T ó BGT κ1

Π $ κ Ź T ó BGT Vp(κ, κ1)

Figure 6.1: Reduction of types with a translation context

We denote |T|Π the translation of a type T in a translation context Π. It is defined below by
mangling the result of the reduction of T.

|T|Π = mangle(DS, GT) κ iff Π $ T ó DS[ GT ] κ
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6.1.5 Translation of expressions

Translation of expressions other than method and constructors, as shown below, simply uses the
direct Pony0 equivalent.

|this|Π = this
|null|Π = null
|e; e1|Π = |e|Π; |e1|Π

|recover e|Π = recover (|e|Π)

|x|Π = x
|x = e|Π = x = |e|Π

|e.f|Π = (|e|Π).f
|e.f = e1|Π = (|e|Π).f = |e1|Π

Translation of method calls requires mangling the name of the function using the receiver’s capability
and the specified type arguments. The receiver capability is extracted from the reducing the receiver
type.

Π $ T ó DS[ GT ] κ Π $ T ó GT1

n1 = mangle(n, κ, GT1)

|e.n[ T; T ](e)|Π = (|e|Π).n1(|e|Π)

Finally, translation of constructor calls is defined by mangling both the name of the type being
constructed and the name of the constructor. We handle the two cases, constructing a known type,
and constructing an object through a type variable separately.

Π $ T ó GT RS1 = mangle(RS, GT)
Π $ T1 ó GT1 k1 = mangle(k, GT1)

|RS[ T ].k[ T1 ](e)|Π = RS1.k1(|e|Π)

Π $ X ó RS[ GT ] κ RS1 = mangle(RS, GT)
Π $ T1 ó GT1 k1 = mangle(k, GT1)

|X.k[ T ](e)|Π = RS1.k1(|e|Π)

6.1.6 Reachability

As we mentioned in section Section 6.1.1, we only want to include in the translated program
classes and and methods required by the rest of the program. We therefore define the notion of
reachability of an expression, which is the set of types and methods required for this expression
to be well-formed in the translated program. When translating a whole program, we decided on
an entrypoint expression for the program, generally Main.create(). The translated program will
contain a translation of all the types reachable by this expression.
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Formally, we define the reachability of an expression through the following four relations:

reachableExprΠ :: Expr ˆ Expr
reachableTypeΠ :: Expr ˆ BasicGroundType

reachableMethodΠ :: Expr ˆ (BasicGroundType ˆ MethodID ˆ Cap ˆ GroundType))

reachableCtorΠ :: Expr ˆ (BasicGroundType ˆ CtorID ˆ GroundType))

For instance, reachableTypeΠ(e, BGT) holds if the type BGT is reachable from the expression e.

We now define the rules used to determine these relations. First of all, method calls require the
receiver type and the corresponding method on this type to be reachable.

e = e1.n[ T; T ](e)
Π $ T ó DS[ GT ] κ Π $ T ó GT1

reachableTypeΠ(e, DS[ GT ])
reachableMethodΠ(e, (DS[ GT ], n, κ, GT1))

When translating a reachable method, it is necessary that the argument and return types are also
translated. We therefore define those as reachable as well.

reachableMethodΠ(e, (DS[ T ], n, κ, T1))

Md(DS[ T ], n[ DS[ T1 ] κ; T ]) = (_,_, x : DS[ T ] κ, DS1[ T2 ] κ1)

reachableTypeΠ(e, DS[ T ])
reachableTypeΠ(e, DS1[ T2 ])

The translation of reachable types requires their parents to be included in the program as well. In
order for the program to be well formed, the child type must define all of its parent’s reachable
methods.

Note that unlike PonyPL, traits and interfaces in Pony0 do not have any constructors, and thus it
is not required for child types to implement all constructors of its parent types. In fact, only classes
and actors have reachable constructors.

reachableTypeΠ(e, DS[ T ]) I[ T1 ] P Is(DS[ T ])
reachableTypeΠ(e, I[ T1 ])

reachableTypeΠ(e, DS[ T ]) I[ T1 ] P Is(DS[ T ])
reachableMethodΠ(e, (I[ T1 ], n, κ, T))
reachableMethodΠ(e, (DS[ T ], n, κ, T))

In addition to nominal subclassing, we also want structural subclassing to be preserved by transla-
tion. That is for each pair of trait and child type, where both types are reachable, if the child type
implements the trait in the original PonyPL program, then it must implement it in the translated
Pony0 program.
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This is achieved by making all reachable methods in the trait also reachable in the child, so they are
included during translation. Again, traits in Pony0 do not contain any contructors, hence including
the parent’s methods is enough.

In the rule below, since the type arguments applied to DS and S do not contain any type variables,
an empty type environment is used when testing is DS implements DS.

reachableTypeΠ(e, DS[ T ]) reachableTypeΠ(e, S[ T1 ])
∅ $ implements(DS[ T ], S[ T1 ])

reachableMethodΠ(e, (S[ T1 ], n, κ, T2))

reachableMethodΠ(e, (DS[ T ], n, κ, T2))

Note that we did not explicitely require type arguments to be reachable. For example even if
A[B ref] is reachable, B might not be. Indeed it is not necessary required by the translated
program, for example if it is unused by the original program or only used as a type variable bound,
such as in the following program,

1 class A[X]
2 fun m[Y: X](y: Y)

If the type argument appears as a method or return argument type, such that it appears in the
translated program, then the rules described above already make it reachable.
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Chapter 7

Conclusion

7.1 Challenges

In this section we discuss a few challenges we faced during our work which we had not expected.
We had to spend significant amounts of time overcoming those, we had not planned for initially.

Before we could start defining a model for generics in Pony, if was important for us to have a good
understanding of how generics were being handled by the Pony compiler. However, while most
other parts of the language have been extensively documented, there has been very little material
covering generics, making it hard for us to do so.

We therefore had to fallback to simply trying the compiler with a large number of various examples,
until we could have a better knowledge of how generics are implemented. However, the implementa-
tion of generics had received little attention, and most uses of generics in the Pony standard library
or in existing applications only use them in simple and straightforward way. While developing our
model, we’ve had to consider many edge cases, and we frequently ran into various compiler bugs
and crashes. While, together with the authors of the compiler, we were able to fix a large portion
of these, which contributed torwards improving the compiler, this distracted us from our main goal
of developing a formal model.

Finally, the interaction between type variables on the one hand and aliasing, unaliasing and view-
point adaptation on the other proved to be much more complicated than we initially envisioned. It
took us a lot of time and iterations to reach our final design.
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7.2 Contributions

In Section 2.3, we have given an extensive informal description of generics, through a simple example
of a generic class Cell. While generics are available in many languages, and most programmers
will be familiar with the overall concept, generics in Pony also include a number of novel features.
These include capability constraints, explicit aliasing, unaliasing and viewpoint adaptation, and
this-based viewpoint adaptation. However, until now, there were no resources available describing
these features in details, making it hard for new users to learn about them. We are planning on
contributing this section to the official online Pony Tutorial, replacing the current existing but
sparse documentation on generics.

Our main contribution, PonyPL, is a new formal model for the Pony language. The core of our
model is largely inspired by the existing models PonySC and PonyGS, to which we have added
support for generics. Our model has allowed a better understanding of how generics should behave,
and how they interact with other features, such as viewpoint adaptation, aliasing and unaliasing.

While defining typing rules for PonyPL, we introduced the concept of symbolic type operators,
which encode modifications to types’ capabilities. In previous models, the modifications could be
applied directly on types, as these were always known in their normal form. Symbolic operators
can be used whatever form the underlying types have, including variables whose capability is not
known.

The introduction of type variables and symbolic type operators has required us to redefine a number
of relations on types, such as subtyping and safe-to-write, which already existed in the previous
models. We’ve done so by first defining partial reification, which determines a set reified, and thus
fully normalized, types from any form of type. Thanks to partial reification, most relations on types
can be defined in a straightforward way in terms of the same relation applied to reified types. Since
reified types are fully normalized and have a similar form as the types used by earlier models, we
are able to reuse these definitions, only requiring minor changes. We therefore expect most lemmas
which hold on these relations in the previous models to hold trivially in our new model.

We have also identified and defined new relations specific to generics, such as bound compliance
and sub-bounds. We have defined these following the same pattern as existing relations, by first
defining the relations on reified types and extending them to full types by partial reification.

As a first step torwards a proof of soundness of our model, we have defined a translation of programs
from PonyPL to Pony0, a model of the Pony language without generics. Pony0 is mostly just a
reformulation of PonyGS in order to match the syntax and definitions from PonyPL. Our translation
is based on reification, by creating distinct copies of generic types and methods, each instantiated
with different type arguments.

Finally, while developing PonyPL, we have identified a number of issues in the implementation
of generics in the compiler. These issues range from simple oversights or mishandle edge cases to
fundamental unsound design decisions in the typing rules. We have worked closely with the authors
of the compiler, by reporting all the issues found upstream, with associated minimal reproducible
examples, and where applicable, insight on how these bugs could be used to trigger data-races.
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Whenever we could, we have either contributed a fix for issues ourselves or helped the compiler
authors by providing suggestions on possible solutions. There are still a number of unfixed issues,
which we plan on addressing in the near future.

7.3 Further Work

There are various ways our work presented here could be expanded upon:

• During our work, we’ve uncovered a number of bugs in the compiler, ranging from compiler
crashes to soundness issues in the type system. While some of these have already fixed, many
others still need to be resolved. In some cases, our proposed solution requires changes to how
types are represented internally, which affects a large portion of the codebase.

• The existing model presented by [Steed, 2016], PonyGS, supports extensions which we did not
consider in PonyPL, namely union, intersection and tuple types. We did not include these
features in our own model as they do not interact directly with generics, and we wanted to
keep our initial model for generics as simple as possible. Future work could integrate these
features back from PonyGS to PonyPL.

• Just like designing a model of the current system has enabled us to find a number of flaws in
the implementation, modelling future features could help prevent these mistakes from being
made in the first place, by identifying potential pitfalls early. Our model could therefore serve
as a basis to design new features around generics.

• Finally, it is currently unclear how representive of the compiler our model is. We had originally
envisioned implementing our model in a standalone typechecker, and running both our own
typechecker and the Pony compiler on a corpus of Pony programs making use of various
features of the language, comparing results. There are two main corpuses of Pony available,
the standard library as well as the compiler’s test suite. This would have allowed us to identify
what programs are allowed by one but not by the other. Unfortunately, we did not have time
to investigate this path further.
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Appendix A

Pony0

A.1 Syntax

P P Program ::= CT AT NT ST
CT P ClassDef ::= class C I F K M
AT P ActorDef ::= actor A I F K M B
NT P TraitDef ::= trait N I MS BS
ST P InterfaceDef ::= interface S I MS BS

Figure A.1: Syntax of programs

F P Field ::= var f : T
K P Ctor ::= new k

(
x : T

)
ñ e

M P Func ::= fun κ m
(
x : T

)
: T ñ e

B P Behv ::= be b
(
x : T

)
ñ e

MS P FuncStub ::= fun κ m
(
x : T

)
: T

BS P BehvStub ::= be b
(
x : T

)
Figure A.2: Syntax of items
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T P Type ::= DS κ

DS P TypeID ::= A | C | N | S
RS P RuntimeTypeID ::= A | C
I P AbstractTypeID ::= N | S
κ P Cap ::= iso | trn | ref | val | box | tag | iso˝ | trn˝

Figure A.3: Syntax of types

e P Expr ::= this | null | e; e
| x | x = e
| e.f | e.f = e | recover e
| e.n(e) | KT.k(e)

E⟨¨⟩P ExprHole ::= ( ¨ ) | x = E⟨¨⟩ | E⟨¨⟩; e | E⟨¨⟩.f
| e.f = E⟨¨⟩ | E⟨¨⟩.f = t | recover E⟨¨⟩
| E⟨¨⟩.n(t) | e.n(t, E⟨¨⟩, e)
| KT.k(t, E⟨¨⟩, e)

Figure A.4: Syntax of expressions

C P ClassID
A P ActorID
N P TraitID
S P InterfaceID
f P FieldID

this, x P SourceID
t P TempID
k P CtorID
m P FuncID
b P BehvID
n P MethID = CtorID Y FuncID Y BehvID

Figure A.5: Identifiers
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A.2 Operational Semantics

χ P Heap = Addr Ñ (Actor Y Object)
Actor = ActorID ˆ (FieldID Ñ Value) ˆ Message ˆ Stack ˆ Expr
Object = ClassID ˆ (FieldID Ñ Value)

µ P Message = MethID ˆ Value
σ P Stack = ActorAddr ¨ Frame
φ P Frame = MethID ˆ (LocalID Ñ Value) ˆ ExprHole

LocalID = SourceID Y TempID
v P Value = Addr Y tnullu

ι P Addr = ActorAddr Y ObjectAddr
α P ActorAddr
ω P ObjectAddr

Figure A.6: Runtime entities
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χ, σ ¨ φ, e⇝ χ1, σ ¨ φ1, e1

χ, σ ¨ φ, E⟨e⟩⇝ χ1, σ ¨ φ1, E
⟨
e1
⟩ ExprHole

χ, χ(α) Ó4, χ(α) Ó5⇝ χ1, σ, e
χ Ñ χ1[α ÞÑ (σ, e)]

Global

χ, σ ¨ φ, t; e⇝ χ, σ ¨ φ, e
Seq

t R φ φ1 = φ[t ÞÑ φ(x)]
χ, σ ¨ φ, x⇝ χ, σ ¨ φ1, t

Local

t1 R φ
φ1 = φ[x ÞÑ φ(t), t1 ÞÑ φ(x)]
χ, σ ¨ φ, x = t⇝ χ, σ ¨ φ1, t1 AsnLocal

t1 R φ φ1 = φ[t1 ÞÑ χ(φ(t), f)]
χ, σ ¨ φ, t.f⇝ χ, σ ¨ φ1, t1 Fld

t2 R φ φ1 = φ[t2 ÞÑ χ(φ(t), f)]
χ1 = χ[φ(t), f ÞÑ φ(t1)]

χ, σ ¨ φ, t.f = t1 ⇝ χ1, σ ¨ φ1, t2 AsnFld

ι = φ(t)
RS = χ(ι) Ó1 (x, e) = Mr(RS, m)
φ2 = (m, [ this ÞÑ ι, x ÞÑ φ(t) ], ¨)

φ1 = (φ Ó1, φ Ó2, E⟨¨⟩)
χ, σ ¨ φ, E⟨t.m(t)⟩⇝ χ, σ ¨ φ1 ¨ φ2, e

Sync

E⟨¨⟩= φ Ó3 t1 R φ
φ2 = (φ Ó1, φ Ó2 [t1 ÞÑ φ1(t)], ¨)

χ, σ ¨ φ ¨ φ1, t⇝ χ, σ ¨ φ2, E
⟨
t1
⟩ Return

α = φ(t)
µ = χ(α) Ó3 µ = (b, φ(t))

χ1 = χ[α ÞÑ µ ¨ µ ]

χ, σ ¨ φ, t.b(t)⇝ χ, σ ¨ φ, t
Async

A = χ(α) Ó1 (n, v) ¨ µ = χ(α) Ó3
(x, e) = Mr(A, n)

φ = (n, [ this ÞÑ α, x ÞÑ v, ¨ ])

χ, α, ϵ⇝ χ[α ÞÑ µ ], α ¨ φ, e
Behave

ω R dom(χ)
(x, e) = Mr(C, k)

f = Fs(C)
χ1 = χ[ω ÞÑ (C, f ÞÑ null) ]

φ2 = (k, [ this ÞÑ ω, x ÞÑ φ(t) ], ¨)
φ1 = (φ Ó1, φ Ó2, E⟨¨⟩)

χ, σ ¨ φ, E⟨C.k(t)⟩⇝ χ1, σ ¨ φ1 ¨ φ2, e
Ctor

α R dom(χ)

f = Fs(A) µ = (k, φ(t))
χ1 = χ[α ÞÑ (A, f ÞÑ null, µ, α, ϵ)]

t R φ φ1 = φ[t ÞÑ α]

χ, σ ¨ φ, A.k(t)⇝ χ1, σ ¨ φ1, t
Ator

t R φ φ1 = φ[t ÞÑ null]
χ, σ ¨ φ, null⇝ χ, σ ¨ φ1, t

Null
φ(t) = null

χ, σ ¨ φ, t.f⇝ χ, σ ¨ φ, t
χ, σ ¨ φ, t.f = t1,⇝ χ, σ ¨ φ, t
χ, σ ¨ φ, t.n(t)⇝ χ, σ ¨ φ, t

Except

χ, α ¨ σ, t⇝ χ, α, ϵ
ReturnBe

χ, σ, recover t⇝ χ, σ, t
Rec

Figure A.7: Execution
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Appendix B

Coq implementation of the
typechecker

This in a excerpt of our implementation of the typechecker in Coq. The rest of the source is provided
in the archive.
1 Section checker.
2 Context (P: program).
3
4 Fixpoint ck_expr (Γ : ty_ctx) (e: expr) : option ty :=
5 let ck_alias (e: expr) (expected: ty) : option unit :=
6 ety Ð ck_expr Γ e;
7 subtype_ty P ety (unalias expected)
8 in
9

10 match e with
11 | expr_null ñ Some ty_null
12
13 | expr_seq e1 e2 ñ

14 ty1 Ð ck_expr Γ e1;
15 ty2 Ð ck_expr Γ e2;
16 Some ty2
17
18 | expr_local x ñ Γ !! x
19
20 | expr_assign_local x e ñ

21 lhs_ty Ð Γ !! x;
22 _ Ð ck_alias e lhs_ty;
23 Some (unalias lhs_ty)
24
25 | expr_field e f ñ

26 base_ty Ð ck_expr Γ e;

98



27 match base_ty with
28 | ty_name ds cap ñ

29 field_ty Ð lookup_F P ds f;
30 cap Ź field_ty
31 | ty_null ñ None
32 end
33
34 | expr_assign_field e f e' ñ

35 base_ty Ð ck_expr Γ e;
36 match base_ty with
37 | ty_name ds cap ñ

38 field_ty Ð lookup_F P ds f;
39 _ Ð ck_alias e' field_ty;
40 cap Ź field_ty
41 | ty_null ñ None
42 end
43
44 | expr_ctor kt k es ñ

45 '( _, args, retty) Ð lookup_Md P kt k;
46 _ Ð ck_args Γ es (map snd args);
47
48 Some retty
49
50 | expr_call e0 m es ñ

51 baset Ð ck_expr Γ e0;
52 match baset with
53 | ty_name ds cap ñ

54 '( _, args, retty) Ð lookup_Md P ds m;
55 _ Ð ck_args Γ es (map snd args);
56
57 Some retty
58 | ty_null ñ None
59 end
60
61 | _ ñ None
62 end
63 with
64 ck_args (Γ : ty_ctx) (es: list_expr) (args: list ty) : option unit :=
65 let ck_alias (e: expr) (expected: ty) : option unit :=
66 ety Ð ck_expr Γ e;
67 subtype_ty P ety (unalias expected)
68 in
69
70 match es, args with
71 | list_expr_nil, nil ñ Some ()
72 | list_expr_cons e es', arg :: args' ñ

73 _ Ð ck_alias e arg;
74 ck_args Γ es' args'
75 | _, _ ñ None
76 end
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77 .
78
79 End checker.

100


	Introduction
	Motivation
	Goals

	Background
	Concurrent programming
	Mutual exclusion
	Actor-Based Programming

	Pony
	Actors
	Classes and synchronous functions
	Named constructors
	Inheritance
	Variance in method signatures
	Capabilities
	Temporary references
	Aliasing
	Destructive reads and unaliasing
	Viewpoint adaptation

	Generics in Pony
	Polymorphism without generics
	Generics
	Generic Bounds
	Capability constraints
	Recursive bounds
	Variance of Type Parameters
	Explicit viewpoint adaptation
	Explicit aliasing and unaliasing
	Object creation

	Modelling and soundness of languages
	Modelling Java
	Unsoundness of Java's type system
	Modelling Pony


	Syntax
	Programs and definitions
	Items
	Types
	Reified and Ground Types

	Type bounds
	Expressions
	Identifiers

	Operational Semantics
	Runtime entities
	Execution
	Implementation

	Typing rules
	Approach
	Desired properties
	Delayed typing
	Exhaustive typing
	Abstract typing
	Partially reified typing

	Introduction
	Expression Typing
	Upper bound
	Reification
	Type Reduction
	Reification set

	Inheritance
	Nominal Inheritance
	Structural Inheritance
	Bound Inheritance

	Subtyping
	Bound compliance
	Sub-bound
	Safe-to-Write
	Sendable Types
	Method subtyping
	Implementation
	Lookup rules

	Soundness
	Translation of PonyPL programs
	Overview
	Name mangling
	Translation contexts
	Translation of types
	Translation of expressions
	Reachability


	Conclusion
	Challenges
	Contributions
	Further Work

	Bibliography
	Pony0
	Syntax
	Operational Semantics

	Coq implementation of the typechecker

